Namespaces
Variants
Actions

Logarithmic convergence criterion

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

A criterion for the convergence of series $\sum a_n$ of positive real numbers. If there are $\alpha > 0$ and $N$ such that \begin{equation}\label{e:compare1} \frac{\ln (a_n)^{-1}}{\ln n} \geq 1 + \alpha \qquad \forall n\geq N \end{equation} then the series converges. If there is $N$ such that \begin{equation}\label{e:compare2} \frac{\ln (a_n)^{-1}}{\ln n} \leq 1 \qquad \forall n \geq N \end{equation} then the series diverges. Indeed \eqref{e:compare1} implies that $\sum_n a_n$ is dominated by $\sum \frac{1}{n^{1+\alpha}}$ (namely that \[ \left.a_n \leq \frac{1}{n^{1+\alpha}}\right)\, , \] whereas \eqref{e:compare2} implies that $\sum_n a_n$ dominates the harmonic series.

How to Cite This Entry:
Logarithmic convergence criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logarithmic_convergence_criterion&oldid=30921
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article