Namespaces
Variants
Actions

Locally flat imbedding

From Encyclopedia of Mathematics
Revision as of 08:32, 19 April 2014 by Ivan (talk | contribs) (TeX)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An imbedding (cf. Immersion) $q$ of one topological manifold $M=M^m$ into another $N=N^n$ such that for any point $x\in M$ there are charts in a neighbourhood $U$ of $x$ and in a neighbourhood $V$ of the point $qx$ in $N$ in which the restriction of $q$ to $U$ linearly maps $U$ to $V$. In other words, $q$ is locally linear in suitable coordinate systems. Equivalently: There are neighbourhoods $U$ of a point $x\in M$ and $V$ of the point $qx\in N$ such that the pair $(V,qU)$ can be mapped homeomorphically onto a standard pair $(D^n,D^m)$ or $(D^n,D_+^m)$, where $D^k$ is the unit ball of the space $\mathbf R^k$ with centre at the origin and $D_+^k$ is the intersection of this ball with the half-space $x_k\geq0$.

Any imbedding of a circle and an arc into a plane is locally flat; however, a circle or an arc can be imbedded in $\mathbf R^k$ with $k\geq3$ in a manner that is not locally flat (see Wild imbedding; Wild sphere). Any smooth imbedding is locally flat in the smooth sense (that is, in the definition the coordinates can be chosen to be smooth). A piecewise-linear imbedding need not be locally flat, not only in the piecewise-linear sense, but even not in the topological sense; for example, a cone with vertex in $\mathbf R_+^4$ over a closed polygon knotted in the bounding plane $\mathbf R^3$. For $n\neq4$ and $m\neq n-2$ there is a homotopy criterion for an imbedding to be locally flat: For every point $x\in M$ and neighbourhood $U$ of the point $qx$ there is a neighbourhood $V\subset U$ such that any loop in $V\setminus qM$ is homotopic to zero in $U\setminus qM$ (local simple connectedness). If $m=n-2$, then such a criterion holds for $n\neq4$, but is essentially more complicated. For $m=4$ the question remains unsettled (1989). For $m=n-1$ and $m=n-2$ a locally flat imbedding has a topological normal bundle.


Comments

References

[a1] J.C. Cantrell (ed.) C.H. Edwards jr. (ed.) , Topology of manifolds , Markham (1970)
How to Cite This Entry:
Locally flat imbedding. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Locally_flat_imbedding&oldid=15755
This article was adapted from an original article by A.V. Chernavskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article