Namespaces
Variants
Actions

Difference between revisions of "Local ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Commutative ring|commutative ring]] with a unit that has a unique maximal ideal. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601901.png" /> is a local ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601902.png" />, then the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601903.png" /> is a field, called the residue field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601904.png" />.
+
<!--
 +
l0601901.png
 +
$#A+1 = 93 n = 0
 +
$#C+1 = 93 : ~/encyclopedia/old_files/data/L060/L.0600190 Local ring
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Examples of local rings. Any field or valuation ring is local. The ring of formal power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601905.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601906.png" /> or over any local ring is local. On the other hand, the polynomial ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601907.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601908.png" /> is not local. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l0601909.png" /> be a topological space (or a differentiable manifold, an analytic space or an algebraic variety) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019010.png" /> be a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019011.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019012.png" /> be the ring of germs at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019013.png" /> of continuous functions (respectively, differentiable, analytic or regular functions); then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019014.png" /> is a local ring whose maximal ideal consists of the germs of functions that vanish at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019015.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Some general ring-theoretical constructions lead to local rings, the most important of which is localization (cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019016.png" /> be a commutative ring and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019017.png" /> be a prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019018.png" />. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019019.png" />, which consists of fractions of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019022.png" />, is local and is called the localization of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019023.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019024.png" />. The maximal ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019025.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019026.png" />, and the residue field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019027.png" /> is identified with the field of fractions of the integral quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019028.png" />. Other constructions that lead to local rings are Henselization (cf. [[Hensel ring|Hensel ring]]) or [[Completion|completion]] of a ring with respect to a maximal ideal. Any quotient ring of a local ring is also local.
+
A [[Commutative ring|commutative ring]] with a unit that has a unique maximal ideal. If  $  A $
 +
is a local ring with maximal ideal $  \mathfrak m $,
 +
then the quotient ring  $  A / \mathfrak m $
 +
is a field, called the residue field of $  A $.
  
A property of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019029.png" /> (or an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019030.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019031.png" />, or an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019032.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019033.png" />) is called a local property if its validity for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019034.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019035.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019036.png" />) is equivalent to its validity for the rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019037.png" /> (respectively, modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019038.png" /> or algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019039.png" />) for all prime ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019041.png" /> (see [[Local property|Local property]]).
+
Examples of local rings. Any field or valuation ring is local. The ring of formal power series  $  k [ [ X _ {1} \dots X _ {n} ] ] $
 +
over a field  $  k $
 +
or over any local ring is local. On the other hand, the polynomial ring  $  k [ X _ {1} \dots X _ {n} ] $
 +
with  $  n \geq  1 $
 +
is not local. Let  $  X $
 +
be a topological space (or a differentiable manifold, an analytic space or an algebraic variety) and let  $  x $
 +
be a point of  $  X $.  
 +
Let  $  A $
 +
be the ring of germs at  $  x $
 +
of continuous functions (respectively, differentiable, analytic or regular functions); then  $  A $
 +
is a local ring whose maximal ideal consists of the germs of functions that vanish at  $  x $.
  
The powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019042.png" /> of the maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019043.png" /> of a local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019044.png" /> determine a basis of neighbourhoods of zero of the so-called local-ring topology (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019046.png" />-adic topology). For a Noetherian local ring this topology is separated (Krull's theorem), and any ideal of it is closed.
+
Some general ring-theoretical constructions lead to local rings, the most important of which is localization (cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). Let  $  A $
 +
be a commutative ring and let  $  \mathfrak p $
 +
be a prime ideal of  $  A $.  
 +
The ring  $  A _ {\mathfrak p }  $,
 +
which consists of fractions of the form  $  a / s $,
 +
where  $  a \in A $,
 +
$  s \in A \setminus  \mathfrak p $,
 +
is local and is called the localization of the ring $  A $
 +
at  $  \mathfrak p $.  
 +
The maximal ideal of  $  A _ {\mathfrak p }  $
 +
is  $  \mathfrak p A _ {\mathfrak p }  $,
 +
and the residue field of $  A _ {\mathfrak p }  $
 +
is identified with the field of fractions of the integral quotient ring $  A / \mathfrak p $.  
 +
Other constructions that lead to local rings are Henselization (cf. [[Hensel ring|Hensel ring]]) or [[Completion|completion]] of a ring with respect to a maximal ideal. Any quotient ring of a local ring is also local.
  
From now on only Noetherian local rings are considered (cf. also [[Noetherian ring|Noetherian ring]]). A local ring is called a complete local ring if it is complete with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019047.png" />-adic topology; in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019048.png" />. In a complete local ring the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019049.png" />-adic topology is weaker than any other separated topology (Chevalley's theorem). Any complete local ring can be represented as the quotient ring of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019050.png" /> of formal power series, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019051.png" /> is a field (in the case of equal characteristic) or of a complete discrete valuation ring (in the case of different characteristic). This theorem makes it possible to prove that complete local rings have a number of specific properties that are absent in arbitrary Noetherian local rings (see [[#References|[5]]]); for example, a complete local ring is an [[Excellent ring|excellent ring]].
+
A property of a ring  $  A $(
 +
or an  $  A $-
 +
module  $  M $,
 +
or an  $  A $-
 +
algebra  $  B $)  
 +
is called a local property if its validity for  $  A $(
 +
or  $  M $,
 +
or  $  B $)
 +
is equivalent to its validity for the rings  $  A _ {\mathfrak p }  $(
 +
respectively, modules  $  M \otimes _ {A} A _ {\mathfrak p }  $
 +
or algebras  $  B \otimes _ {A} A _ {\mathfrak p }  $)  
 +
for all prime ideals  $  \mathfrak p $
 +
of $  A $(
 +
see [[Local property|Local property]]).
  
A finer quantitative investigation of a local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019052.png" /> is connected with the application of the concept of the adjoint graded ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019053.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019054.png" /> be the dimension of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019055.png" /> over the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019056.png" />; as a function of the integer argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019057.png" /> it is called the Hilbert–Samuel function (or characteristic function) of the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019058.png" />. For large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019059.png" /> this function coincides with a certain polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019060.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019061.png" />, which is called the Hilbert–Samuel polynomial of the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019062.png" /> (see also [[Hilbert polynomial|Hilbert polynomial]]). This fact can be expressed in terms of a Poincaré series: The formal series
+
The powers  $  \mathfrak m  ^ {n} $
 +
of the maximal ideal  $  \mathfrak m $
 +
of a local ring $  A $
 +
determine a basis of neighbourhoods of zero of the so-called local-ring topology (or $  \mathfrak m $-
 +
adic topology). For a Noetherian local ring this topology is separated (Krull's theorem), and any ideal of it is closed.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019063.png" /></td> </tr></table>
+
From now on only Noetherian local rings are considered (cf. also [[Noetherian ring|Noetherian ring]]). A local ring is called a complete local ring if it is complete with respect to the  $  \mathfrak m $-
 +
adic topology; in this case  $  A = \lim\limits _ {\leftarrow n }  A / \mathfrak m  ^ {n} $.
 +
In a complete local ring the  $  \mathfrak m $-
 +
adic topology is weaker than any other separated topology (Chevalley's theorem). Any complete local ring can be represented as the quotient ring of the ring  $  S [ [ X _ {1} \dots X _ {n} ] ] $
 +
of formal power series, where  $  S $
 +
is a field (in the case of equal characteristic) or of a complete discrete valuation ring (in the case of different characteristic). This theorem makes it possible to prove that complete local rings have a number of specific properties that are absent in arbitrary Noetherian local rings (see [[#References|[5]]]); for example, a complete local ring is an [[Excellent ring|excellent ring]].
  
is a rational function of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019065.png" /> is a polynomial and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019066.png" /> is the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019067.png" />. The integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019068.png" /> is the (Krull) dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019069.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019070.png" /> and is one of the most important invariants of a ring. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019071.png" /> is equal to the least number of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019072.png" /> for which the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019073.png" /> is Artinian (cf. [[Artinian ring|Artinian ring]]). If these elements can be chosen in such a way that they generate the maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019074.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019075.png" /> is called a regular local ring. The regularity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019076.png" /> is equivalent to the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019077.png" />. For a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019078.png" />-dimensional regular ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019079.png" />,
+
A finer quantitative investigation of a local ring  $  A $
 +
is connected with the application of the concept of the adjoint graded ring  $  \mathop{\rm Gr} ( A) = \oplus _ {n \geq  0 }  ( \mathfrak m  ^ {n} / \mathfrak m  ^ {n+} 1 ) $.  
 +
Let  $  H _ {A} ( n) $
 +
be the dimension of the vector space  $  \mathfrak m  ^ {n} / \mathfrak m  ^ {n+} 1 $
 +
over the residue field  $  A / \mathfrak m $;
 +
as a function of the integer argument  $  n $
 +
it is called the Hilbert–Samuel function (or characteristic function) of the local ring $  A $.  
 +
For large  $  n $
 +
this function coincides with a certain polynomial  $  \overline{H}\; _ {A} ( n) $
 +
in  $  n $,  
 +
which is called the Hilbert–Samuel polynomial of the local ring $  A $(
 +
see also [[Hilbert polynomial|Hilbert polynomial]]). This fact can be expressed in terms of a Poincaré series: The formal series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019080.png" /></td> </tr></table>
+
$$
 +
P _ {A} ( t)  = \sum _ {n \geq  0 } H _ {A} ( n) \cdot t  ^ {n}
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019081.png" />. Geometrically, regularity means that the corresponding point of the (analytic or algebraic) variety is non-singular.
+
is a rational function of the form  $  f ( t) ( 1 - t )  ^ {-} d( A) $,
 +
where  $  f ( t) \in \mathbf Z [ t] $
 +
is a polynomial and $  d ( A) - 1 $
 +
is the degree of  $  \overline{H}\; _ {A} $.  
 +
The integer  $  d ( A) $
 +
is the (Krull) dimension  $  \mathop{\rm dim}  A $
 +
of the ring  $  A $
 +
and is one of the most important invariants of a ring. Moreover,  $  d ( A) $
 +
is equal to the least number of elements  $  a _ {1} \dots a _ {d} \in A $
 +
for which the quotient ring  $  A / ( a _ {1} \dots a _ {d} ) $
 +
is Artinian (cf. [[Artinian ring|Artinian ring]]). If these elements can be chosen in such a way that they generate the maximal ideal  $  \mathfrak m $,  
 +
then  $  A $
 +
is called a regular local ring. The regularity of $  A $
 +
is equivalent to the fact that  $  \mathop{\rm dim} ( \mathfrak m / \mathfrak m  ^ {2} ) =  \mathop{\rm dim}  A $.
 +
For a  $  d $-
 +
dimensional regular ring  $  A $,
  
Besides the characteristic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019082.png" /> and the dimension and multiplicity connected with it, a local ring has various invariants of a homological kind. The main one of these is the depth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019083.png" /> (see [[Depth of a module|Depth of a module]]); the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019084.png" /> distinguishes among local rings the so-called Cohen–Macaulay rings (cf. [[Cohen–Macaulay ring|Cohen–Macaulay ring]]). It is not known (1989) whether there is a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019085.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019086.png" /> for an arbitrary or a complete local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019087.png" />. Other homological invariants are the so-called Betti numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019088.png" /> of a local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019089.png" />, that is, the dimensions of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019090.png" />-spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019091.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019092.png" /> is the residue field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019093.png" />. The question of the rationality of the Poincaré series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019094.png" /> is open, although for many classes of rings an affirmative answer is known. There are also invariants of an algebraic-geometrical nature; for their definition one uses resolution of the singularity corresponding to the local ring.
+
$$
 +
H _ {A} ( n)  = \
 +
\left ( \begin{array}{c}
 +
n + d - 1 \\
 +
d - 1
 +
\end{array}
 +
\right )
 +
$$
 +
 
 +
and  $  P _ {A} ( t) = ( 1 - t )  ^ {-} d $.
 +
Geometrically, regularity means that the corresponding point of the (analytic or algebraic) variety is non-singular.
 +
 
 +
Besides the characteristic function $  H _ {A} $
 +
and the dimension and multiplicity connected with it, a local ring has various invariants of a homological kind. The main one of these is the depth $  \mathop{\rm depth}  A $(
 +
see [[Depth of a module|Depth of a module]]); the condition $  \mathop{\rm depth}  A = \mathop{\rm dim}  A $
 +
distinguishes among local rings the so-called Cohen–Macaulay rings (cf. [[Cohen–Macaulay ring|Cohen–Macaulay ring]]). It is not known (1989) whether there is a module $  M $
 +
with $  \mathop{\rm depth}  M = \mathop{\rm dim}  A $
 +
for an arbitrary or a complete local ring $  A $.  
 +
Other homological invariants are the so-called Betti numbers $  b _ {i} ( A) $
 +
of a local ring $  A $,  
 +
that is, the dimensions of the $  k $-
 +
spaces $  \mathop{\rm Tor} _ {i}  ^ {A} ( k , k ) $,  
 +
where $  k $
 +
is the residue field of $  A $.  
 +
The question of the rationality of the Poincaré series $  \sum _ {n \geq  0 }  b _ {n} ( A) t  ^ {n} $
 +
is open, although for many classes of rings an affirmative answer is known. There are also invariants of an algebraic-geometrical nature; for their definition one uses resolution of the singularity corresponding to the local ring.
  
 
A similar theory has been constructed for semi-local rings; that is, rings that have finitely many maximal ideals. The role of a maximal ideal for them is played by the [[Jacobson radical|Jacobson radical]].
 
A similar theory has been constructed for semi-local rings; that is, rings that have finitely many maximal ideals. The role of a maximal ideal for them is played by the [[Jacobson radical|Jacobson radical]].
Line 27: Line 136:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Krull,  "Dimensionstheorie in Stellenringen"  ''J. Reine Angew. Math.'' , '''179'''  (1939)  pp. 204–226</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Chevalley,  "On the theory of local rings"  ''Ann. of Math. (2)'' , '''44'''  (1943)  pp. 690–708</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.S. Cohen,  "On the structure and ideal theory of complete local rings"  ''Trans. Amer. Math. Soc.'' , '''59'''  (1946)  pp. 54–106</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P. Samuel,  "Algèbre locale" , Gauthier-Villars  (1953)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M. Nagata,  "Local rings" , Interscience  (1962)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  O. Zariski,  P. Samuel,  "Commutative algebra" , '''2''' , Springer  (1975)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  J.-P. Serre,  "Algèbre locale. Multiplicités" , ''Lect. notes in math.'' , '''11''' , Springer  (1965)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  M.F. Atiyah,  I.G. Macdonald,  "Introduction to commutative algebra" , Addison-Wesley  (1969)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Krull,  "Dimensionstheorie in Stellenringen"  ''J. Reine Angew. Math.'' , '''179'''  (1939)  pp. 204–226</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Chevalley,  "On the theory of local rings"  ''Ann. of Math. (2)'' , '''44'''  (1943)  pp. 690–708</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.S. Cohen,  "On the structure and ideal theory of complete local rings"  ''Trans. Amer. Math. Soc.'' , '''59'''  (1946)  pp. 54–106</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P. Samuel,  "Algèbre locale" , Gauthier-Villars  (1953)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M. Nagata,  "Local rings" , Interscience  (1962)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  O. Zariski,  P. Samuel,  "Commutative algebra" , '''2''' , Springer  (1975)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  J.-P. Serre,  "Algèbre locale. Multiplicités" , ''Lect. notes in math.'' , '''11''' , Springer  (1965)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  M.F. Atiyah,  I.G. Macdonald,  "Introduction to commutative algebra" , Addison-Wesley  (1969)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:17, 5 June 2020


A commutative ring with a unit that has a unique maximal ideal. If $ A $ is a local ring with maximal ideal $ \mathfrak m $, then the quotient ring $ A / \mathfrak m $ is a field, called the residue field of $ A $.

Examples of local rings. Any field or valuation ring is local. The ring of formal power series $ k [ [ X _ {1} \dots X _ {n} ] ] $ over a field $ k $ or over any local ring is local. On the other hand, the polynomial ring $ k [ X _ {1} \dots X _ {n} ] $ with $ n \geq 1 $ is not local. Let $ X $ be a topological space (or a differentiable manifold, an analytic space or an algebraic variety) and let $ x $ be a point of $ X $. Let $ A $ be the ring of germs at $ x $ of continuous functions (respectively, differentiable, analytic or regular functions); then $ A $ is a local ring whose maximal ideal consists of the germs of functions that vanish at $ x $.

Some general ring-theoretical constructions lead to local rings, the most important of which is localization (cf. Localization in a commutative algebra). Let $ A $ be a commutative ring and let $ \mathfrak p $ be a prime ideal of $ A $. The ring $ A _ {\mathfrak p } $, which consists of fractions of the form $ a / s $, where $ a \in A $, $ s \in A \setminus \mathfrak p $, is local and is called the localization of the ring $ A $ at $ \mathfrak p $. The maximal ideal of $ A _ {\mathfrak p } $ is $ \mathfrak p A _ {\mathfrak p } $, and the residue field of $ A _ {\mathfrak p } $ is identified with the field of fractions of the integral quotient ring $ A / \mathfrak p $. Other constructions that lead to local rings are Henselization (cf. Hensel ring) or completion of a ring with respect to a maximal ideal. Any quotient ring of a local ring is also local.

A property of a ring $ A $( or an $ A $- module $ M $, or an $ A $- algebra $ B $) is called a local property if its validity for $ A $( or $ M $, or $ B $) is equivalent to its validity for the rings $ A _ {\mathfrak p } $( respectively, modules $ M \otimes _ {A} A _ {\mathfrak p } $ or algebras $ B \otimes _ {A} A _ {\mathfrak p } $) for all prime ideals $ \mathfrak p $ of $ A $( see Local property).

The powers $ \mathfrak m ^ {n} $ of the maximal ideal $ \mathfrak m $ of a local ring $ A $ determine a basis of neighbourhoods of zero of the so-called local-ring topology (or $ \mathfrak m $- adic topology). For a Noetherian local ring this topology is separated (Krull's theorem), and any ideal of it is closed.

From now on only Noetherian local rings are considered (cf. also Noetherian ring). A local ring is called a complete local ring if it is complete with respect to the $ \mathfrak m $- adic topology; in this case $ A = \lim\limits _ {\leftarrow n } A / \mathfrak m ^ {n} $. In a complete local ring the $ \mathfrak m $- adic topology is weaker than any other separated topology (Chevalley's theorem). Any complete local ring can be represented as the quotient ring of the ring $ S [ [ X _ {1} \dots X _ {n} ] ] $ of formal power series, where $ S $ is a field (in the case of equal characteristic) or of a complete discrete valuation ring (in the case of different characteristic). This theorem makes it possible to prove that complete local rings have a number of specific properties that are absent in arbitrary Noetherian local rings (see [5]); for example, a complete local ring is an excellent ring.

A finer quantitative investigation of a local ring $ A $ is connected with the application of the concept of the adjoint graded ring $ \mathop{\rm Gr} ( A) = \oplus _ {n \geq 0 } ( \mathfrak m ^ {n} / \mathfrak m ^ {n+} 1 ) $. Let $ H _ {A} ( n) $ be the dimension of the vector space $ \mathfrak m ^ {n} / \mathfrak m ^ {n+} 1 $ over the residue field $ A / \mathfrak m $; as a function of the integer argument $ n $ it is called the Hilbert–Samuel function (or characteristic function) of the local ring $ A $. For large $ n $ this function coincides with a certain polynomial $ \overline{H}\; _ {A} ( n) $ in $ n $, which is called the Hilbert–Samuel polynomial of the local ring $ A $( see also Hilbert polynomial). This fact can be expressed in terms of a Poincaré series: The formal series

$$ P _ {A} ( t) = \sum _ {n \geq 0 } H _ {A} ( n) \cdot t ^ {n} $$

is a rational function of the form $ f ( t) ( 1 - t ) ^ {-} d( A) $, where $ f ( t) \in \mathbf Z [ t] $ is a polynomial and $ d ( A) - 1 $ is the degree of $ \overline{H}\; _ {A} $. The integer $ d ( A) $ is the (Krull) dimension $ \mathop{\rm dim} A $ of the ring $ A $ and is one of the most important invariants of a ring. Moreover, $ d ( A) $ is equal to the least number of elements $ a _ {1} \dots a _ {d} \in A $ for which the quotient ring $ A / ( a _ {1} \dots a _ {d} ) $ is Artinian (cf. Artinian ring). If these elements can be chosen in such a way that they generate the maximal ideal $ \mathfrak m $, then $ A $ is called a regular local ring. The regularity of $ A $ is equivalent to the fact that $ \mathop{\rm dim} ( \mathfrak m / \mathfrak m ^ {2} ) = \mathop{\rm dim} A $. For a $ d $- dimensional regular ring $ A $,

$$ H _ {A} ( n) = \ \left ( \begin{array}{c} n + d - 1 \\ d - 1 \end{array} \right ) $$

and $ P _ {A} ( t) = ( 1 - t ) ^ {-} d $. Geometrically, regularity means that the corresponding point of the (analytic or algebraic) variety is non-singular.

Besides the characteristic function $ H _ {A} $ and the dimension and multiplicity connected with it, a local ring has various invariants of a homological kind. The main one of these is the depth $ \mathop{\rm depth} A $( see Depth of a module); the condition $ \mathop{\rm depth} A = \mathop{\rm dim} A $ distinguishes among local rings the so-called Cohen–Macaulay rings (cf. Cohen–Macaulay ring). It is not known (1989) whether there is a module $ M $ with $ \mathop{\rm depth} M = \mathop{\rm dim} A $ for an arbitrary or a complete local ring $ A $. Other homological invariants are the so-called Betti numbers $ b _ {i} ( A) $ of a local ring $ A $, that is, the dimensions of the $ k $- spaces $ \mathop{\rm Tor} _ {i} ^ {A} ( k , k ) $, where $ k $ is the residue field of $ A $. The question of the rationality of the Poincaré series $ \sum _ {n \geq 0 } b _ {n} ( A) t ^ {n} $ is open, although for many classes of rings an affirmative answer is known. There are also invariants of an algebraic-geometrical nature; for their definition one uses resolution of the singularity corresponding to the local ring.

A similar theory has been constructed for semi-local rings; that is, rings that have finitely many maximal ideals. The role of a maximal ideal for them is played by the Jacobson radical.

References

[1] W. Krull, "Dimensionstheorie in Stellenringen" J. Reine Angew. Math. , 179 (1939) pp. 204–226
[2] C. Chevalley, "On the theory of local rings" Ann. of Math. (2) , 44 (1943) pp. 690–708
[3] I.S. Cohen, "On the structure and ideal theory of complete local rings" Trans. Amer. Math. Soc. , 59 (1946) pp. 54–106
[4] P. Samuel, "Algèbre locale" , Gauthier-Villars (1953)
[5] M. Nagata, "Local rings" , Interscience (1962)
[6] O. Zariski, P. Samuel, "Commutative algebra" , 2 , Springer (1975)
[7] J.-P. Serre, "Algèbre locale. Multiplicités" , Lect. notes in math. , 11 , Springer (1965)
[8] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[9] M.F. Atiyah, I.G. Macdonald, "Introduction to commutative algebra" , Addison-Wesley (1969)

Comments

For the notion of Krull dimension see Dimension of an associative ring.

A counter-example to the question of the rationality of the Poincaré series was given by D. Anick [a1].

References

[a1] D. Anick, "Construction d'espaces de lacets et d'anneaux locaux à séries de Poincaré–Betti non rationelles" C.R. Acad. Soc. Paris , 290 (1980) pp. 1729–1732 (English abstract)
How to Cite This Entry:
Local ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Local_ring&oldid=12768
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article