Namespaces
Variants
Actions

Linear variety

From Encyclopedia of Mathematics
Revision as of 20:38, 31 December 2014 by Richard Pinch (talk | contribs) (alternative characterisations, cite Bourbaki, Algebra I)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

linear manifold, affine subspace, flat

A subset $M$ of a (linear) vector space $E$ that is a translate of a linear subspace $L$ of $E$, that is, a set $M$ of the form $x_0 + L$ for some $x_0$. The set $M$ determines $L$ uniquely, whereas $x_0$ is defined only modulo $L$: $$ x_0 + L = x_1 + N $$ if and only if $L = N$ and $x_1 - x_0 \in L$. The dimension of $M$ is the dimension of $L$. A linear variety corresponding to a subspace of codimension 1 is called a hyperplane.

A linear variety may be alternatively characterised as a non-empty subset $M$ of $E$ such that the set $L =\{ m_1 - m_2 : m_1,m_2 \in M \}$ is a linear subspace of $E$; or such that for a fixed $m_0 \in M$ the set $L =\{ m_1 - m_0 : m_1 \in M \}$ is a linear subspace; or as a set closed under linear combinations $\sum_i \lambda_i m_i$ where $m_i \in M$ and $\sum_i \lambda_i = 1$.

The intersection of any family of linear varieties is again a linear variety.

References

  • N. Bourbaki, "Algebra I: Chapters 1-3", Elements of mathematics, Springer (1998) ISBN 3-540-64243-9
How to Cite This Entry:
Linear variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_variety&oldid=36016
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article