Namespaces
Variants
Actions

Difference between revisions of "Linear system of differential equations with almost-periodic coefficients"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
l0594801.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/L059/L.0509480 Linear system of differential equations with almost\AAhperiodic coefficients
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A system of ordinary differential equations
 
A system of ordinary differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594801.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\dot{x}  = A ( t) x + f ( t) ,\  x \in \mathbf R  ^ {n} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594802.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594803.png" /> are almost-periodic mappings (cf. [[Almost-periodic function|Almost-periodic function]]). In coordinate form one has
+
where $  A ( \cdot ) : \mathbf R \rightarrow  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ) $,
 +
$  f ( \cdot ) : \mathbf R \rightarrow \mathbf R  ^ {n} $
 +
are almost-periodic mappings (cf. [[Almost-periodic function|Almost-periodic function]]). In coordinate form one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594804.png" /></td> </tr></table>
+
$$
 +
\dot{x}  ^ {i}  = \sum _ { j= } 1 ^ { n }  a _ {j}  ^ {i} ( t) x
 +
^ {j} + f ^ { i } ( t) ,\  i = 1 \dots n ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594805.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594806.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594807.png" />, are almost-periodic real-valued functions. Such systems arise in connection with [[Bohr almost-periodic functions|Bohr almost-periodic functions]] (see [[#References|[1]]]). Interest in a narrower class of systems (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l0594809.png" /> are quasi-periodic mappings, cf. [[Quasi-periodic function|Quasi-periodic function]]) arose much earlier in connection with the examination of variational equations along conditionally-periodic solutions of the equations of celestial mechanics.
+
where $  a _ {j}  ^ {i} ( t) $
 +
and $  f ^ { i } ( t) $,
 +
$  i , j = 1 \dots n $,  
 +
are almost-periodic real-valued functions. Such systems arise in connection with [[Bohr almost-periodic functions|Bohr almost-periodic functions]] (see [[#References|[1]]]). Interest in a narrower class of systems (where $  A ( t) $
 +
and $  f ( t) $
 +
are quasi-periodic mappings, cf. [[Quasi-periodic function|Quasi-periodic function]]) arose much earlier in connection with the examination of variational equations along conditionally-periodic solutions of the equations of celestial mechanics.
  
 
If the homogeneous system
 
If the homogeneous system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\dot{x}  = A ( t) x
 +
$$
  
is a system with integral separation (see [[Integral separation condition|Integral separation condition]]), then it reduces to a diagonal system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948011.png" /> with almost-periodic coefficients by an almost-periodic (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948012.png" />) [[Lyapunov transformation|Lyapunov transformation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948013.png" />; that is, it reduces to a system for which there is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948014.png" />, independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948015.png" />, consisting of vectors that are eigen vectors of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948016.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948017.png" />. In coordinates with respect to this basis the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948018.png" /> is written in diagonal form:
+
is a system with integral separation (see [[Integral separation condition|Integral separation condition]]), then it reduces to a diagonal system $  \dot{y} = B ( t) y $
 +
with almost-periodic coefficients by an almost-periodic (with respect to $  t $)  
 +
[[Lyapunov transformation|Lyapunov transformation]] $  x = L ( t) y $;  
 +
that is, it reduces to a system for which there is a basis of $  \mathbf R  ^ {n} $,  
 +
independent of $  t $,  
 +
consisting of vectors that are eigen vectors of the operator $  B ( t) $
 +
for every $  t \in \mathbf R $.  
 +
In coordinates with respect to this basis the system $  \dot{y} = B ( t) y $
 +
is written in diagonal form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948019.png" /></td> </tr></table>
+
$$
 +
\dot{y}  ^ {i}  = b _ {i}  ^ {i} ( t) y  ^ {i} ,\  i = 1
 +
\dots n .
 +
$$
  
 
The set of systems with integral separation is open in the space of systems (2) with almost-periodic coefficients, endowed with the metric
 
The set of systems with integral separation is open in the space of systems (2) with almost-periodic coefficients, endowed with the metric
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948020.png" /></td> </tr></table>
+
$$
 +
d ( A _ {1} , A _ {2} )  = \sup _ {t \in \mathbf R } \
 +
\| A _ {1} ( t) - A _ {2} ( t) \| .
 +
$$
  
The following theorem holds. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948022.png" />, let the eigen values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948023.png" /> all be real and distinct, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948024.png" /> be an almost-periodic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948025.png" />. Then there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948026.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948027.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948028.png" /> the system (2) reduces to a diagonal system with almost-periodic coefficients, by an almost-periodic (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948029.png" />) Lyapunov transformation.
+
The following theorem holds. Let $  A ( t) = C + \epsilon D ( t) $,  
 +
where $  C \in  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ) $,  
 +
let the eigen values of $  C $
 +
all be real and distinct, and let $  D ( \cdot ) $
 +
be an almost-periodic mapping $  \mathbf R \rightarrow  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ) $.  
 +
Then there is an $  \eta > 0 $
 +
such that for all $  \epsilon $
 +
with $  | \epsilon | < \eta $
 +
the system (2) reduces to a diagonal system with almost-periodic coefficients, by an almost-periodic (with respect to $  t $)  
 +
Lyapunov transformation.
  
For an almost-periodic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948030.png" /> the following four assertions are equivalent: 1) for every almost-periodic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948031.png" /> there is an almost-periodic solution of the system (1); 2) there is exponential [[Dichotomy|dichotomy]] of solutions of the system (2); 3) none of the systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948033.png" />, has non-zero bounded solutions; and 4) for every bounded mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059480/l05948034.png" /> there is a bounded solution of the system (1).
+
For an almost-periodic mapping $  A ( t) : \mathbf R \rightarrow  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ) $
 +
the following four assertions are equivalent: 1) for every almost-periodic mapping $  f ( \cdot ) : \mathbf R \rightarrow \mathbf R  ^ {n} $
 +
there is an almost-periodic solution of the system (1); 2) there is exponential [[Dichotomy|dichotomy]] of solutions of the system (2); 3) none of the systems $  \dot{x} = \widetilde{A}  ( t) x $,  
 +
where $  \widetilde{A}  ( t) = \lim\limits _ {k \rightarrow \infty }  A ( t _ {k} + t) $,  
 +
has non-zero bounded solutions; and 4) for every bounded mapping $  f ( t) : \mathbf R \rightarrow \mathbf R  ^ {n} $
 +
there is a bounded solution of the system (1).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Bohr,  "Almost-periodic functions" , Chelsea, reprint  (1947)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Favard,  "Leçons sur les fonctions presque-périodiques" , Gauthier-Villars  (1933)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.P. Erugin,  "Linear systems of ordinary differential equations with periodic and quasi-periodic coefficients" , Acad. Press  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.L. Massera,  J.J. Shäffer,  "Linear differential equations and function spaces" , Acad. Press  (1986)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E. Mukhamadiev,  "On invertibility of differential operators in the space of continuous functions bounded on the real axis"  ''Soviet Math. Dokl.'' , '''12'''  (1971)  pp. 49–52  ''Dokl. Akad. Nauk SSSR'' , '''196''' :  1  (1971)  pp. 47–49</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 71–146</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Bohr,  "Almost-periodic functions" , Chelsea, reprint  (1947)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Favard,  "Leçons sur les fonctions presque-périodiques" , Gauthier-Villars  (1933)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.P. Erugin,  "Linear systems of ordinary differential equations with periodic and quasi-periodic coefficients" , Acad. Press  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.L. Massera,  J.J. Shäffer,  "Linear differential equations and function spaces" , Acad. Press  (1986)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E. Mukhamadiev,  "On invertibility of differential operators in the space of continuous functions bounded on the real axis"  ''Soviet Math. Dokl.'' , '''12'''  (1971)  pp. 49–52  ''Dokl. Akad. Nauk SSSR'' , '''196''' :  1  (1971)  pp. 47–49</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 71–146</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 22:17, 5 June 2020


A system of ordinary differential equations

$$ \tag{1 } \dot{x} = A ( t) x + f ( t) ,\ x \in \mathbf R ^ {n} , $$

where $ A ( \cdot ) : \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $, $ f ( \cdot ) : \mathbf R \rightarrow \mathbf R ^ {n} $ are almost-periodic mappings (cf. Almost-periodic function). In coordinate form one has

$$ \dot{x} ^ {i} = \sum _ { j= } 1 ^ { n } a _ {j} ^ {i} ( t) x ^ {j} + f ^ { i } ( t) ,\ i = 1 \dots n , $$

where $ a _ {j} ^ {i} ( t) $ and $ f ^ { i } ( t) $, $ i , j = 1 \dots n $, are almost-periodic real-valued functions. Such systems arise in connection with Bohr almost-periodic functions (see [1]). Interest in a narrower class of systems (where $ A ( t) $ and $ f ( t) $ are quasi-periodic mappings, cf. Quasi-periodic function) arose much earlier in connection with the examination of variational equations along conditionally-periodic solutions of the equations of celestial mechanics.

If the homogeneous system

$$ \tag{2 } \dot{x} = A ( t) x $$

is a system with integral separation (see Integral separation condition), then it reduces to a diagonal system $ \dot{y} = B ( t) y $ with almost-periodic coefficients by an almost-periodic (with respect to $ t $) Lyapunov transformation $ x = L ( t) y $; that is, it reduces to a system for which there is a basis of $ \mathbf R ^ {n} $, independent of $ t $, consisting of vectors that are eigen vectors of the operator $ B ( t) $ for every $ t \in \mathbf R $. In coordinates with respect to this basis the system $ \dot{y} = B ( t) y $ is written in diagonal form:

$$ \dot{y} ^ {i} = b _ {i} ^ {i} ( t) y ^ {i} ,\ i = 1 \dots n . $$

The set of systems with integral separation is open in the space of systems (2) with almost-periodic coefficients, endowed with the metric

$$ d ( A _ {1} , A _ {2} ) = \sup _ {t \in \mathbf R } \ \| A _ {1} ( t) - A _ {2} ( t) \| . $$

The following theorem holds. Let $ A ( t) = C + \epsilon D ( t) $, where $ C \in \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $, let the eigen values of $ C $ all be real and distinct, and let $ D ( \cdot ) $ be an almost-periodic mapping $ \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $. Then there is an $ \eta > 0 $ such that for all $ \epsilon $ with $ | \epsilon | < \eta $ the system (2) reduces to a diagonal system with almost-periodic coefficients, by an almost-periodic (with respect to $ t $) Lyapunov transformation.

For an almost-periodic mapping $ A ( t) : \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $ the following four assertions are equivalent: 1) for every almost-periodic mapping $ f ( \cdot ) : \mathbf R \rightarrow \mathbf R ^ {n} $ there is an almost-periodic solution of the system (1); 2) there is exponential dichotomy of solutions of the system (2); 3) none of the systems $ \dot{x} = \widetilde{A} ( t) x $, where $ \widetilde{A} ( t) = \lim\limits _ {k \rightarrow \infty } A ( t _ {k} + t) $, has non-zero bounded solutions; and 4) for every bounded mapping $ f ( t) : \mathbf R \rightarrow \mathbf R ^ {n} $ there is a bounded solution of the system (1).

References

[1] H. Bohr, "Almost-periodic functions" , Chelsea, reprint (1947) (Translated from German)
[2] J. Favard, "Leçons sur les fonctions presque-périodiques" , Gauthier-Villars (1933)
[3] N.P. Erugin, "Linear systems of ordinary differential equations with periodic and quasi-periodic coefficients" , Acad. Press (1966) (Translated from Russian)
[4] J.L. Massera, J.J. Shäffer, "Linear differential equations and function spaces" , Acad. Press (1986)
[5] E. Mukhamadiev, "On invertibility of differential operators in the space of continuous functions bounded on the real axis" Soviet Math. Dokl. , 12 (1971) pp. 49–52 Dokl. Akad. Nauk SSSR , 196 : 1 (1971) pp. 47–49
[6] Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146

Comments

See also Differential equation, ordinary.

References

[a1] J.K. Hale, "Ordinary differential equations" , Wiley (1969)
How to Cite This Entry:
Linear system of differential equations with almost-periodic coefficients. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_system_of_differential_equations_with_almost-periodic_coefficients&oldid=17504
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article