Namespaces
Variants
Actions

Difference between revisions of "Linear system"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A family of effective linearly equivalent divisors (cf. [[Divisor|Divisor]]) on an [[Algebraic variety|algebraic variety]], parametrized by projective space.
+
<!--
 +
l0594701.png
 +
$#A+1 = 72 n = 0
 +
$#C+1 = 72 : ~/encyclopedia/old_files/data/L059/L.0509470 Linear system
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594701.png" /> be a non-singular algebraic variety over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594703.png" /> an [[Invertible sheaf|invertible sheaf]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594704.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594705.png" /> the space of global sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594706.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594707.png" /> a finite-dimensional subspace. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594708.png" />, then the divisors determined by zero sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l0594709.png" /> are linearly equivalent and effective. A linear system is the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947010.png" /> of one-dimensional subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947011.png" /> that parametrizes these divisors. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947012.png" />, then the linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947013.png" /> is said to be complete; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947014.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947015.png" /> be a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947016.png" />. It defines a [[Rational mapping|rational mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947017.png" /> by the formula
+
A family of effective linearly equivalent divisors (cf. [[Divisor (algebraic geometry)]]) on an [[Algebraic variety|algebraic variety]], parametrized by projective space.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947018.png" /></td> </tr></table>
+
Let  $  X $
 +
be a non-singular algebraic variety over a field  $  k $,
 +
$  {\mathcal L} $
 +
an [[Invertible sheaf|invertible sheaf]] on  $  X $,
 +
$  \Gamma ( X , {\mathcal L} ) $
 +
the space of global sections of  $  {\mathcal L} $,
 +
and  $  L \subset  \Gamma ( X , {\mathcal L} ) $
 +
a finite-dimensional subspace. If  $  \mathop{\rm dim}  L > 0 $,
 +
then the divisors determined by zero sections of  $  L $
 +
are linearly equivalent and effective. A linear system is the projective space  $  | L | = P ( L) $
 +
of one-dimensional subspaces of  $  L $
 +
that parametrizes these divisors. If  $  \mathop{\rm dim}  \Gamma ( X , {\mathcal L} ) < \infty $,
 +
then the linear system  $  | \Gamma ( X , {\mathcal L} ) | $
 +
is said to be complete; it is denoted by  $  | L | $.
  
One usually says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947019.png" /> is defined by the linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947020.png" />. The image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947021.png" /> does not lie in any hyperplane of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947022.png" /> (see [[#References|[2]]]). Conversely, every rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947023.png" /> having this property is defined by some linear system.
+
Let  $  s _ {0} \dots s _ {n} $
 +
be a basis of $  L $.  
 +
It defines a [[Rational mapping|rational mapping]] $  \phi _ {L} : X \rightarrow P  ^ {n} $
 +
by the formula
  
A fixed component of a linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947024.png" /> is an effective divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947025.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947026.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947027.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947029.png" /> is an effective divisor. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947030.png" /> runs through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947031.png" />, the divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947032.png" /> form a linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947033.png" /> of the same dimension as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947034.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947035.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947036.png" />. Therefore, in considering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947037.png" /> one may assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947038.png" /> does not have fixed components. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947039.png" /> is not defined exactly on the [[Basic set|basic set]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947040.png" />.
+
$$
 +
x  \mapsto  ( s _ {0} ( x) \dots s _ {n} ( x) ) ,\ \
 +
x \in X .
 +
$$
 +
 
 +
One usually says that  $  \phi _ {L} $
 +
is defined by the linear system  $  | L | $.
 +
The image  $  \phi _ {L} ( X) $
 +
does not lie in any hyperplane of  $  P  ^ {n} $(
 +
see [[#References|[2]]]). Conversely, every rational mapping  $  \psi :  X \rightarrow P  ^ {m} $
 +
having this property is defined by some linear system.
 +
 
 +
A fixed component of a linear system $  | L | $
 +
is an effective divisor $  D  ^ {*} $
 +
on $  X $
 +
such that $  D = D  ^  \prime  + D  ^ {*} $
 +
for any $  D \in | L | $,  
 +
where $  D  ^  \prime  $
 +
is an effective divisor. When $  D $
 +
runs through $  | L | $,  
 +
the divisors $  D  ^  \prime  $
 +
form a linear system $  | L  ^  \prime  | $
 +
of the same dimension as $  | L | $.  
 +
The mapping $  \phi _ {L  ^  \prime  } $
 +
coincides with $  \phi _ {L} $.  
 +
Therefore, in considering $  \phi _ {L} $
 +
one may assume that $  | L | $
 +
does not have fixed components. In this case $  \phi _ {L} $
 +
is not defined exactly on the [[Basic set|basic set]] of $  | L | $.
  
 
===Examples.===
 
===Examples.===
  
 +
1) Let  $  X = P  ^ {2} $
 +
and  $  L = {\mathcal O} _ {P  ^ {2}  } ( d) $,
 +
$  d \geq  1 $;
 +
then the sections of  $  \Gamma ( P  ^ {2} , {\mathcal O} _ {P  ^ {2}  } ( d) ) $
 +
can be identified with forms of degree  $  d $
 +
on  $  P  ^ {2} $,
 +
and the complete linear system  $  ( {\mathcal O} _ {P  ^ {2}  } ( d) ) $
 +
can be identified with the set of all curves of order  $  d $.
  
1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947043.png" />; then the sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947044.png" /> can be identified with forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947045.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947046.png" />, and the complete linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947047.png" /> can be identified with the set of all curves of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947048.png" />.
+
2) The standard quadratic transformation $  \tau : P  ^ {2} \rightarrow P  ^ {2} $(
 
+
see [[Cremona transformation|Cremona transformation]]) is defined by the linear system of conics passing through the points $  ( 0 , 0 , 1 ) $,
2) The standard quadratic transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947049.png" /> (see [[Cremona transformation|Cremona transformation]]) is defined by the linear system of conics passing through the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947052.png" />.
+
$  ( 0 , 1 , 0 ) $,
 +
$  ( 1 , 0 , 0 ) $.
  
3) The Geiser involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947053.png" /> is defined by the linear system of curves of order 8 passing with multiplicity 3 through 7 points in general position (cf. [[Point in general position|Point in general position]]).
+
3) The Geiser involution $  \alpha : P  ^ {2} \rightarrow P  ^ {2} $
 +
is defined by the linear system of curves of order 8 passing with multiplicity 3 through 7 points in general position (cf. [[Point in general position|Point in general position]]).
  
4) The Bertini involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947054.png" /> is defined by the linear system of curves of order 17 passing with multiplicity 6 through 8 points in general position.
+
4) The Bertini involution $  \beta : P  ^ {2} \rightarrow P  ^ {2} $
 +
is defined by the linear system of curves of order 17 passing with multiplicity 6 through 8 points in general position.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|1392959}} {{MR|1060325}} {{ZBL|0830.00008}} {{ZBL|0733.14015}} {{ZBL|0832.14026}} {{ZBL|0509.14036}} {{ZBL|0492.14024}} {{ZBL|0379.14006}} {{ZBL|0253.14006}} {{ZBL|0154.21001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> O. Zariski, "Algebraic surfaces" , Springer (1971) {{MR|0469915}} {{ZBL|0219.14020}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|1392959}} {{MR|1060325}} {{ZBL|0830.00008}} {{ZBL|0733.14015}} {{ZBL|0832.14026}} {{ZBL|0509.14036}} {{ZBL|0492.14024}} {{ZBL|0379.14006}} {{ZBL|0253.14006}} {{ZBL|0154.21001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> O. Zariski, "Algebraic surfaces" , Springer (1971) {{MR|0469915}} {{ZBL|0219.14020}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
In classical (elementary) projective and analytic geometry one speaks of linear systems of curves, surfaces, quadrics, etc. These are families of curves, surfaces, etc. of the form
 
In classical (elementary) projective and analytic geometry one speaks of linear systems of curves, surfaces, quadrics, etc. These are families of curves, surfaces, etc. of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947055.png" /></td> </tr></table>
+
$$
 +
\lambda _ {1} F _ {1} + \dots + \lambda _ {m} F _ {m}  = 0 ,
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947056.png" /> define individual curves, surfaces, etc. If the family is one-dimensional (i.e. through a point in general position passes one member of the family), one speaks of a pencil; a two-dimensional family (i.e. two different members of the family pass through a point in general position) is called a net; and a three- (or higher-) dimensional family is called a web, [[#References|[a1]]]. Instead of "net" the term "bundlebundle" is also occasionally used and instead of "web" one also sometimes finds "net" .
+
where the $  F _ {i} = 0 $
 +
define individual curves, surfaces, etc. If the family is one-dimensional (i.e. through a point in general position passes one member of the family), one speaks of a pencil; a two-dimensional family (i.e. two different members of the family pass through a point in general position) is called a net; and a three- (or higher-) dimensional family is called a web, [[#References|[a1]]]. Instead of "net" the term "bundlebundle" is also occasionally used and instead of "web" one also sometimes finds "net" .
  
Quite generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947057.png" /> is an open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947058.png" />, a codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947061.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947062.png" />-web on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947063.png" /> is defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947064.png" /> foliations of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947065.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947066.png" /> such that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947067.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947068.png" /> leaves passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947069.png" /> are in general position. Cf. also [[Web|Web]]. Especially in the case of a codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947070.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947071.png" />-web, i.e. an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947073.png" />-web of curves, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947074.png" /> (same <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947075.png" />) the word [[Net|net]] is often used.
+
Quite generally, if $  U $
 +
is an open subset of $  \mathbf R  ^ {n} $,  
 +
a codimension $  k $
 +
$  d $-
 +
web on $  U $
 +
is defined by $  d $
 +
foliations of codimension $  k $
 +
on $  U $
 +
such that for each $  x \in U $
 +
the $  d $
 +
leaves passing through $  x $
 +
are in general position. Cf. also [[Web|Web]]. Especially in the case of a codimension $  ( n - 1) $
 +
$  n $-
 +
web, i.e. an $  n $-
 +
web of curves, on $  U \subset  \mathbf R  ^ {n} $(
 +
same $  n $)  
 +
the word [[Net|net]] is often used.
  
 
The phrase "linear system" of course also occurs (as an abbreviation) in many other parts of mathematics. E.g. in differential equation theory: for system of linear differential equations, and in control and systems theory: for linear input/output systems, linear dynamical systems or linear control system.
 
The phrase "linear system" of course also occurs (as an abbreviation) in many other parts of mathematics. E.g. in differential equation theory: for system of linear differential equations, and in control and systems theory: for linear input/output systems, linear dynamical systems or linear control system.
Line 40: Line 120:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.A. Todd, "Projective and analytical geometry" , Pitman (1947) pp. Chapt. VI {{MR|1527119}} {{MR|0024624}} {{ZBL|0031.06701}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.A. Todd, "Projective and analytical geometry" , Pitman (1947) pp. Chapt. VI {{MR|1527119}} {{MR|0024624}} {{ZBL|0031.06701}} </TD></TR></table>
 +
 +
[[Category:Algebraic geometry]]

Latest revision as of 22:17, 5 June 2020


A family of effective linearly equivalent divisors (cf. Divisor (algebraic geometry)) on an algebraic variety, parametrized by projective space.

Let $ X $ be a non-singular algebraic variety over a field $ k $, $ {\mathcal L} $ an invertible sheaf on $ X $, $ \Gamma ( X , {\mathcal L} ) $ the space of global sections of $ {\mathcal L} $, and $ L \subset \Gamma ( X , {\mathcal L} ) $ a finite-dimensional subspace. If $ \mathop{\rm dim} L > 0 $, then the divisors determined by zero sections of $ L $ are linearly equivalent and effective. A linear system is the projective space $ | L | = P ( L) $ of one-dimensional subspaces of $ L $ that parametrizes these divisors. If $ \mathop{\rm dim} \Gamma ( X , {\mathcal L} ) < \infty $, then the linear system $ | \Gamma ( X , {\mathcal L} ) | $ is said to be complete; it is denoted by $ | L | $.

Let $ s _ {0} \dots s _ {n} $ be a basis of $ L $. It defines a rational mapping $ \phi _ {L} : X \rightarrow P ^ {n} $ by the formula

$$ x \mapsto ( s _ {0} ( x) \dots s _ {n} ( x) ) ,\ \ x \in X . $$

One usually says that $ \phi _ {L} $ is defined by the linear system $ | L | $. The image $ \phi _ {L} ( X) $ does not lie in any hyperplane of $ P ^ {n} $( see [2]). Conversely, every rational mapping $ \psi : X \rightarrow P ^ {m} $ having this property is defined by some linear system.

A fixed component of a linear system $ | L | $ is an effective divisor $ D ^ {*} $ on $ X $ such that $ D = D ^ \prime + D ^ {*} $ for any $ D \in | L | $, where $ D ^ \prime $ is an effective divisor. When $ D $ runs through $ | L | $, the divisors $ D ^ \prime $ form a linear system $ | L ^ \prime | $ of the same dimension as $ | L | $. The mapping $ \phi _ {L ^ \prime } $ coincides with $ \phi _ {L} $. Therefore, in considering $ \phi _ {L} $ one may assume that $ | L | $ does not have fixed components. In this case $ \phi _ {L} $ is not defined exactly on the basic set of $ | L | $.

Examples.

1) Let $ X = P ^ {2} $ and $ L = {\mathcal O} _ {P ^ {2} } ( d) $, $ d \geq 1 $; then the sections of $ \Gamma ( P ^ {2} , {\mathcal O} _ {P ^ {2} } ( d) ) $ can be identified with forms of degree $ d $ on $ P ^ {2} $, and the complete linear system $ ( {\mathcal O} _ {P ^ {2} } ( d) ) $ can be identified with the set of all curves of order $ d $.

2) The standard quadratic transformation $ \tau : P ^ {2} \rightarrow P ^ {2} $( see Cremona transformation) is defined by the linear system of conics passing through the points $ ( 0 , 0 , 1 ) $, $ ( 0 , 1 , 0 ) $, $ ( 1 , 0 , 0 ) $.

3) The Geiser involution $ \alpha : P ^ {2} \rightarrow P ^ {2} $ is defined by the linear system of curves of order 8 passing with multiplicity 3 through 7 points in general position (cf. Point in general position).

4) The Bertini involution $ \beta : P ^ {2} \rightarrow P ^ {2} $ is defined by the linear system of curves of order 17 passing with multiplicity 6 through 8 points in general position.

References

[1] I.R. Shafarevich, "Algebraic surfaces" Proc. Steklov Inst. Math. , 75 (1967) Trudy Mat. Inst. Steklov. , 75 (1965) MR1392959 MR1060325 Zbl 0830.00008 Zbl 0733.14015 Zbl 0832.14026 Zbl 0509.14036 Zbl 0492.14024 Zbl 0379.14006 Zbl 0253.14006 Zbl 0154.21001
[2] D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) MR0209285 Zbl 0187.42701
[3] O. Zariski, "Algebraic surfaces" , Springer (1971) MR0469915 Zbl 0219.14020

Comments

In classical (elementary) projective and analytic geometry one speaks of linear systems of curves, surfaces, quadrics, etc. These are families of curves, surfaces, etc. of the form

$$ \lambda _ {1} F _ {1} + \dots + \lambda _ {m} F _ {m} = 0 , $$

where the $ F _ {i} = 0 $ define individual curves, surfaces, etc. If the family is one-dimensional (i.e. through a point in general position passes one member of the family), one speaks of a pencil; a two-dimensional family (i.e. two different members of the family pass through a point in general position) is called a net; and a three- (or higher-) dimensional family is called a web, [a1]. Instead of "net" the term "bundlebundle" is also occasionally used and instead of "web" one also sometimes finds "net" .

Quite generally, if $ U $ is an open subset of $ \mathbf R ^ {n} $, a codimension $ k $ $ d $- web on $ U $ is defined by $ d $ foliations of codimension $ k $ on $ U $ such that for each $ x \in U $ the $ d $ leaves passing through $ x $ are in general position. Cf. also Web. Especially in the case of a codimension $ ( n - 1) $ $ n $- web, i.e. an $ n $- web of curves, on $ U \subset \mathbf R ^ {n} $( same $ n $) the word net is often used.

The phrase "linear system" of course also occurs (as an abbreviation) in many other parts of mathematics. E.g. in differential equation theory: for system of linear differential equations, and in control and systems theory: for linear input/output systems, linear dynamical systems or linear control system.

References

[a1] J.A. Todd, "Projective and analytical geometry" , Pitman (1947) pp. Chapt. VI MR1527119 MR0024624 Zbl 0031.06701
How to Cite This Entry:
Linear system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_system&oldid=24498
This article was adapted from an original article by V.A. Iskovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article