Namespaces
Variants
Actions

Difference between revisions of "Linear connection"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A linear connection on a differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591401.png" /> is a differential-geometric structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591402.png" /> associated with an [[Affine connection|affine connection]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591403.png" />. For every affine connection a [[Parallel displacement(2)|parallel displacement]] of vectors is defined, which makes it possible to define for every curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591404.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591405.png" /> a linear mapping of tangent spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png" />. In this sense an affine connection determines a linear connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591407.png" />, to which all concepts and constructions can be transferred which only depend on the displacement of vectors and, more generally, of tensors. A linear connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591408.png" /> is a connection in the principal bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591409.png" /> of frames in the tangent spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914011.png" />, and is defined in one of the following three equivalent ways:
+
<!--
 +
l0591401.png
 +
$#A+1 = 75 n = 0
 +
$#C+1 = 75 : ~/encyclopedia/old_files/data/L059/L.0509140 Linear connection
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
1) by a connection object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914012.png" />, satisfying the following transformation law on intersections of domains of local charts:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914013.png" /></td> </tr></table>
+
A linear connection on a differentiable manifold  $  M $
 +
is a differential-geometric structure on  $  M $
 +
associated with an [[Affine connection|affine connection]] on  $  M $.
 +
For every affine connection a [[Parallel displacement(2)|parallel displacement]] of vectors is defined, which makes it possible to define for every curve  $  L ( x _ {0} , x _ {1} ) $
 +
in  $  M $
 +
a linear mapping of tangent spaces  $  T _ {x _ {1}  } ( M) \rightarrow T _ {x _ {0}  } ( M) $.  
 +
In this sense an affine connection determines a linear connection on  $  M $,
 +
to which all concepts and constructions can be transferred which only depend on the displacement of vectors and, more generally, of tensors. A linear connection on  $  M $
 +
is a connection in the principal bundle  $  B ( M) $
 +
of frames in the tangent spaces  $  T _ {x} ( M) $,
 +
$  x \in M $,
 +
and is defined in one of the following three equivalent ways:
  
2) by a matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914014.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914015.png" /> on the principal frame bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914016.png" />, such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914017.png" />-forms
+
1) by a connection object  $  \Gamma _ {jk}  ^ {i} $,  
 +
satisfying the following transformation law on intersections of domains of local charts:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914018.png" /></td> </tr></table>
+
$$
 +
\overline \Gamma \; {} _ {jk}  ^ {i}  = \
 +
 
 +
\frac{\partial  \overline{x}\; {}  ^ {i} }{\partial  x  ^ {r} }
 +
 
 +
\frac{\partial  x  ^ {s} }{\partial  \overline{x}\; {}  ^ {j} }
 +
 
 +
\frac{\partial  x  ^ {t} }{\partial  \overline{x}\; {}  ^ {k} }
 +
 
 +
\Gamma _ {st}  ^ {r} +
 +
 
 +
\frac{\partial  ^ {2} x  ^ {r} }{\partial  \overline{x}\; {}  ^ {j} \partial  \overline{x}\; {}  ^ {k} }
 +
 
 +
\frac{\partial  \overline{x}\; {}  ^ {i} }{\partial  x  ^ {r} }
 +
;
 +
$$
 +
 
 +
2) by a matrix of  $  1 $-
 +
forms  $  \omega _ {j}  ^ {i} $
 +
on the principal frame bundle  $  B ( M) $,
 +
such that the  $  2 $-
 +
forms
 +
 
 +
$$
 +
d \omega _ {j}  ^ {i} + \omega _ {k}  ^ {i} \wedge
 +
\omega _ {j}  ^ {k}  = \Omega _ {j}  ^ {i}
 +
$$
  
 
in each local coordinate system can be expressed in the form
 
in each local coordinate system can be expressed in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914019.png" /></td> </tr></table>
+
$$
 +
\Omega _ {j}  ^ {i}  =
 +
\frac{1}{2}
  
3) by the bilinear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914020.png" /> of [[Covariant differentiation|covariant differentiation]], which associates with two vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914021.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914022.png" /> a third vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914023.png" /> and has the properties:
+
R _ {jkl}  ^ {i}  d x  ^ {k} \wedge d x  ^ {l} ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914024.png" /></td> </tr></table>
+
3) by the bilinear operator  $  \nabla $
 +
of [[Covariant differentiation|covariant differentiation]], which associates with two vector fields  $  X , Y $
 +
on  $  M $
 +
a third vector field  $  \nabla _ {Y} X $
 +
and has the properties:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914025.png" /></td> </tr></table>
+
$$
 +
\nabla _ {Y} ( f X )  = ( Y f  ) X + f \nabla _ {Y} X ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914026.png" /> is a smooth function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914027.png" />.
+
$$
 +
\nabla _ {fY} X  = f \nabla _ {Y} X ,
 +
$$
  
Every linear connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914028.png" /> uniquely determines an affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914029.png" /> canonically associated with it. It is determined by the involute of any curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914031.png" />. To obtain this involute one must first define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914032.png" /> linearly independent parallel vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914033.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914034.png" />, then expand the tangent vector field to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914035.png" /> in terms of them,
+
where  $  f $
 +
is a smooth function on $  M $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914036.png" /></td> </tr></table>
+
Every linear connection on  $  M $
 +
uniquely determines an affine connection on  $  M $
 +
canonically associated with it. It is determined by the involute of any curve  $  L ( x _ {0} , x _ {1} ) $
 +
in  $  M $.
 +
To obtain this involute one must first define  $  n = \mathop{\rm dim}  M $
 +
linearly independent parallel vector fields  $  X _ {1} \dots X _ {n} $
 +
along  $  L $,
 +
then expand the tangent vector field to  $  L $
 +
in terms of them,
  
and finally find in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914037.png" /> the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914038.png" /> of the differential equation
+
$$
 +
\dot{x} ( t)  = \mu  ^ {i} ( t) X _ {i} ( t),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914039.png" /></td> </tr></table>
+
and finally find in  $  T _ {x _ {0}  } ( M) $
 +
the solution  $  x ( t) $
 +
of the differential equation
  
with initial value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914040.png" />. At an arbitrary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914041.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914042.png" /> an affine mapping of tangent affine spaces
+
$$
 +
\dot{x} ( t)  = \mu  ^ {i} ( t) X _ {i} ( 0)
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914043.png" /></td> </tr></table>
+
with initial value  $  x ( 0) = 0 $.  
 +
At an arbitrary point  $  x _ {t} $
 +
of  $  L $
 +
an affine mapping of tangent affine spaces
 +
 
 +
$$
 +
( A _ {n} ) _ {x _ {t}  }  \rightarrow \
 +
( A _ {n} ) _ {x _ {0}  }
 +
$$
  
 
is now defined by a mapping of frames
 
is now defined by a mapping of frames
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914044.png" /></td> </tr></table>
+
$$
 +
\{ x _ {t} , X _ {i} ( t) \}  \rightarrow \
 +
\{ y _ {t} , X _ {i} ( 0) \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914045.png" />.
+
where $  {x _ {0} y _ {t} } vec = x ( t) $.
  
 
A linear connection is often identified with the affine connection canonically associated with it, by using the one-to-one correspondence between them.
 
A linear connection is often identified with the affine connection canonically associated with it, by using the one-to-one correspondence between them.
  
A linear connection on a vector bundle is a differential-geometric structure on a differentiable vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914046.png" /> which associates with every piecewise-smooth curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914047.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914048.png" /> beginning at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914049.png" /> and ending at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914050.png" /> a linear isomorphism of the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914052.png" /> as vector spaces, called [[Parallel displacement(2)|parallel displacement]] along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914053.png" />. A linear connection is determined by a [[Horizontal distribution|horizontal distribution]] on the principal bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914054.png" /> of frames in the fibres of the given vector bundle. Analytically, a linear connection is specified by a matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914055.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914056.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914058.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914059.png" /> denotes the dimension of the fibres, such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914060.png" />-forms
+
A linear connection on a vector bundle is a differential-geometric structure on a differentiable vector bundle $  \pi : X \rightarrow B $
 +
which associates with every piecewise-smooth curve $  L $
 +
in $  B $
 +
beginning at $  x _ {0} $
 +
and ending at $  x _ {1} $
 +
a linear isomorphism of the fibres $  \pi  ^ {-} 1 ( x _ {0} ) $
 +
and $  \pi  ^ {-} 1 ( x _ {1} ) $
 +
as vector spaces, called [[Parallel displacement(2)|parallel displacement]] along $  L $.  
 +
A linear connection is determined by a [[Horizontal distribution|horizontal distribution]] on the principal bundle $  P $
 +
of frames in the fibres of the given vector bundle. Analytically, a linear connection is specified by a matrix of $  1 $-
 +
forms $  \omega _  \alpha  ^  \beta  $
 +
on $  P $,  
 +
where $  \alpha , \beta = 1 \dots k $,  
 +
where $  k $
 +
denotes the dimension of the fibres, such that the $  2 $-
 +
forms
 +
 
 +
$$
 +
d \omega _  \alpha  ^  \beta  + \omega _  \alpha  ^  \gamma  \wedge
 +
\omega _  \gamma  ^  \beta  =  \Omega _  \alpha  ^  \beta
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914061.png" /></td> </tr></table>
+
are semi-basic, that is, in every local coordinate system  $  ( x  ^ {i} ) $
 +
on  $  B $
 +
they can be expressed in the form
  
are semi-basic, that is, in every local coordinate system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914062.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914063.png" /> they can be expressed in the form
+
$$
 +
\Omega _  \alpha  ^  \beta  =
 +
\frac{1}{2}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914064.png" /></td> </tr></table>
+
R _ {\alpha i j }  ^  \beta  \
 +
d x  ^ {i} \wedge d x  ^ {j} .
 +
$$
  
The horizontal distribution is determined, moreover, by the differential system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914065.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914066.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914067.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914068.png" /> are called curvature forms. According to the holonomy theorem they determine the [[Holonomy group|holonomy group]] of the linear connection.
+
The horizontal distribution is determined, moreover, by the differential system $  \omega _  \alpha  ^  \beta  = 0 $
 +
on $  P $.  
 +
The $  2 $-
 +
forms $  \Omega _  \alpha  ^  \beta  $
 +
are called curvature forms. According to the holonomy theorem they determine the [[Holonomy group|holonomy group]] of the linear connection.
  
A linear connection in a fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914069.png" /> is a connection under which the tangent vectors of horizontal curves beginning at a given point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914070.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914071.png" /> form a vector subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914072.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914073.png" />; the linear connection is determined by the [[Horizontal distribution|horizontal distribution]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914074.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914075.png" />.
+
A linear connection in a fibre bundle $  E $
 +
is a connection under which the tangent vectors of horizontal curves beginning at a given point $  y $
 +
of $  E $
 +
form a vector subspace $  \Delta _ {y} $
 +
of $  T _ {y} ( E) $;  
 +
the linear connection is determined by the [[Horizontal distribution|horizontal distribution]] $  \Delta $:  
 +
$  y \mapsto \Delta _ {y} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Lichnerowicz,  "Global theory of connections and holonomy groups" , Noordhoff  (1976)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''1''' , Interscience  (1963)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Lichnerowicz,  "Global theory of connections and holonomy groups" , Noordhoff  (1976)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''1''' , Interscience  (1963)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Lang,  "Introduction to differentiable manifolds" , Interscience  (1967)  pp. App. III</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Lang,  "Introduction to differentiable manifolds" , Interscience  (1967)  pp. App. III</TD></TR></table>

Latest revision as of 22:17, 5 June 2020


A linear connection on a differentiable manifold $ M $ is a differential-geometric structure on $ M $ associated with an affine connection on $ M $. For every affine connection a parallel displacement of vectors is defined, which makes it possible to define for every curve $ L ( x _ {0} , x _ {1} ) $ in $ M $ a linear mapping of tangent spaces $ T _ {x _ {1} } ( M) \rightarrow T _ {x _ {0} } ( M) $. In this sense an affine connection determines a linear connection on $ M $, to which all concepts and constructions can be transferred which only depend on the displacement of vectors and, more generally, of tensors. A linear connection on $ M $ is a connection in the principal bundle $ B ( M) $ of frames in the tangent spaces $ T _ {x} ( M) $, $ x \in M $, and is defined in one of the following three equivalent ways:

1) by a connection object $ \Gamma _ {jk} ^ {i} $, satisfying the following transformation law on intersections of domains of local charts:

$$ \overline \Gamma \; {} _ {jk} ^ {i} = \ \frac{\partial \overline{x}\; {} ^ {i} }{\partial x ^ {r} } \frac{\partial x ^ {s} }{\partial \overline{x}\; {} ^ {j} } \frac{\partial x ^ {t} }{\partial \overline{x}\; {} ^ {k} } \Gamma _ {st} ^ {r} + \frac{\partial ^ {2} x ^ {r} }{\partial \overline{x}\; {} ^ {j} \partial \overline{x}\; {} ^ {k} } \frac{\partial \overline{x}\; {} ^ {i} }{\partial x ^ {r} } ; $$

2) by a matrix of $ 1 $- forms $ \omega _ {j} ^ {i} $ on the principal frame bundle $ B ( M) $, such that the $ 2 $- forms

$$ d \omega _ {j} ^ {i} + \omega _ {k} ^ {i} \wedge \omega _ {j} ^ {k} = \Omega _ {j} ^ {i} $$

in each local coordinate system can be expressed in the form

$$ \Omega _ {j} ^ {i} = \frac{1}{2} R _ {jkl} ^ {i} d x ^ {k} \wedge d x ^ {l} ; $$

3) by the bilinear operator $ \nabla $ of covariant differentiation, which associates with two vector fields $ X , Y $ on $ M $ a third vector field $ \nabla _ {Y} X $ and has the properties:

$$ \nabla _ {Y} ( f X ) = ( Y f ) X + f \nabla _ {Y} X , $$

$$ \nabla _ {fY} X = f \nabla _ {Y} X , $$

where $ f $ is a smooth function on $ M $.

Every linear connection on $ M $ uniquely determines an affine connection on $ M $ canonically associated with it. It is determined by the involute of any curve $ L ( x _ {0} , x _ {1} ) $ in $ M $. To obtain this involute one must first define $ n = \mathop{\rm dim} M $ linearly independent parallel vector fields $ X _ {1} \dots X _ {n} $ along $ L $, then expand the tangent vector field to $ L $ in terms of them,

$$ \dot{x} ( t) = \mu ^ {i} ( t) X _ {i} ( t), $$

and finally find in $ T _ {x _ {0} } ( M) $ the solution $ x ( t) $ of the differential equation

$$ \dot{x} ( t) = \mu ^ {i} ( t) X _ {i} ( 0) $$

with initial value $ x ( 0) = 0 $. At an arbitrary point $ x _ {t} $ of $ L $ an affine mapping of tangent affine spaces

$$ ( A _ {n} ) _ {x _ {t} } \rightarrow \ ( A _ {n} ) _ {x _ {0} } $$

is now defined by a mapping of frames

$$ \{ x _ {t} , X _ {i} ( t) \} \rightarrow \ \{ y _ {t} , X _ {i} ( 0) \} , $$

where $ {x _ {0} y _ {t} } vec = x ( t) $.

A linear connection is often identified with the affine connection canonically associated with it, by using the one-to-one correspondence between them.

A linear connection on a vector bundle is a differential-geometric structure on a differentiable vector bundle $ \pi : X \rightarrow B $ which associates with every piecewise-smooth curve $ L $ in $ B $ beginning at $ x _ {0} $ and ending at $ x _ {1} $ a linear isomorphism of the fibres $ \pi ^ {-} 1 ( x _ {0} ) $ and $ \pi ^ {-} 1 ( x _ {1} ) $ as vector spaces, called parallel displacement along $ L $. A linear connection is determined by a horizontal distribution on the principal bundle $ P $ of frames in the fibres of the given vector bundle. Analytically, a linear connection is specified by a matrix of $ 1 $- forms $ \omega _ \alpha ^ \beta $ on $ P $, where $ \alpha , \beta = 1 \dots k $, where $ k $ denotes the dimension of the fibres, such that the $ 2 $- forms

$$ d \omega _ \alpha ^ \beta + \omega _ \alpha ^ \gamma \wedge \omega _ \gamma ^ \beta = \Omega _ \alpha ^ \beta $$

are semi-basic, that is, in every local coordinate system $ ( x ^ {i} ) $ on $ B $ they can be expressed in the form

$$ \Omega _ \alpha ^ \beta = \frac{1}{2} R _ {\alpha i j } ^ \beta \ d x ^ {i} \wedge d x ^ {j} . $$

The horizontal distribution is determined, moreover, by the differential system $ \omega _ \alpha ^ \beta = 0 $ on $ P $. The $ 2 $- forms $ \Omega _ \alpha ^ \beta $ are called curvature forms. According to the holonomy theorem they determine the holonomy group of the linear connection.

A linear connection in a fibre bundle $ E $ is a connection under which the tangent vectors of horizontal curves beginning at a given point $ y $ of $ E $ form a vector subspace $ \Delta _ {y} $ of $ T _ {y} ( E) $; the linear connection is determined by the horizontal distribution $ \Delta $: $ y \mapsto \Delta _ {y} $.

References

[1] A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French)
[2] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Interscience (1963)

Comments

References

[a1] S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III
How to Cite This Entry:
Linear connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_connection&oldid=47650
This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article