Namespaces
Variants
Actions

Difference between revisions of "Limit point of a trajectory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (label)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588901.png" /> of a dynamical system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588902.png" />''
+
{{TEX|done}}
 +
''$\{f^tx\}$ of a dynamical system $f^t$''
  
 
A point
 
A point
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$x_\alpha=\lim_{k\to\infty}f^{t_k}x\label{1}\tag{1}$$
  
(an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588905.png" />-limit point) or
+
(an $\alpha$-limit point) or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588906.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$x_\omega=\lim_{k\to\infty}f^{t_k}x\label{2}\tag{2}$$
  
(an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588908.png" />-limit point), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l0588909.png" /> is a sequence such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889010.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889011.png" /> in (1), or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889012.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889013.png" /> in (2), and for which the limits in (1) or (2) exist.
+
(an $\omega$-limit point), where $\{t_k\}_{k\in\mathbf N}$ is a sequence such that $t_k\to-\infty$ as $k\to\infty$ in \eqref{1}, or $t_k\to+\infty$ as $k\to\infty$ in \eqref{2}, and for which the limits in \eqref{1} or \eqref{2} exist.
  
For a trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889014.png" /> of a [[Dynamical system|dynamical system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889015.png" /> (or, in other words, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889016.png" />, cf. [[#References|[1]]]), an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889017.png" />-limit point (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889018.png" />-limit point) is the same as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889019.png" />-limit point (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889020.png" />-limit point) of the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889021.png" /> of the dynamical system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889022.png" /> (the system with reverse time). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889023.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889024.png" />) of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889025.png" />-limit points (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889026.png" />-limit points) of a trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889027.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889029.png" />-limit set (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889031.png" />-limit set) of this trajectory (cf. [[Limit set of a trajectory|Limit set of a trajectory]]).
+
For a trajectory $\{f^tx\}$ of a [[Dynamical system|dynamical system]] $f^t$ (or, in other words, for $f(t,x)$, cf. [[#References|[1]]]), an $\alpha$-limit point ($\omega$-limit point) is the same as an $\omega$-limit point ($\alpha$-limit point) of the trajectory $\{f^{-t}x\}$ of the dynamical system $f^{-t}$ (the system with reverse time). The set $\Omega_x$ ($A_x$) of all $\omega$-limit points ($\alpha$-limit points) of a trajectory $\{f^tx\}$ is called the $\omega$-limit set ($\alpha$-limit set) of this trajectory (cf. [[Limit set of a trajectory|Limit set of a trajectory]]).
  
 
====References====
 
====References====
Line 19: Line 20:
  
 
====Comments====
 
====Comments====
For a dynamical system with discrete time (or, a [[Cascade|cascade]]) similar definitions and the same terminology are used (now in the above the sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889032.png" /> have to be in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058890/l05889033.png" />).
+
For a dynamical system with discrete time (or, a [[Cascade|cascade]]) similar definitions and the same terminology are used (now in the above the sequences $\{t_k\}$ have to be in $\mathbf Z$).

Latest revision as of 17:08, 14 February 2020

$\{f^tx\}$ of a dynamical system $f^t$

A point

$$x_\alpha=\lim_{k\to\infty}f^{t_k}x\label{1}\tag{1}$$

(an $\alpha$-limit point) or

$$x_\omega=\lim_{k\to\infty}f^{t_k}x\label{2}\tag{2}$$

(an $\omega$-limit point), where $\{t_k\}_{k\in\mathbf N}$ is a sequence such that $t_k\to-\infty$ as $k\to\infty$ in \eqref{1}, or $t_k\to+\infty$ as $k\to\infty$ in \eqref{2}, and for which the limits in \eqref{1} or \eqref{2} exist.

For a trajectory $\{f^tx\}$ of a dynamical system $f^t$ (or, in other words, for $f(t,x)$, cf. [1]), an $\alpha$-limit point ($\omega$-limit point) is the same as an $\omega$-limit point ($\alpha$-limit point) of the trajectory $\{f^{-t}x\}$ of the dynamical system $f^{-t}$ (the system with reverse time). The set $\Omega_x$ ($A_x$) of all $\omega$-limit points ($\alpha$-limit points) of a trajectory $\{f^tx\}$ is called the $\omega$-limit set ($\alpha$-limit set) of this trajectory (cf. Limit set of a trajectory).

References

[1] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)


Comments

For a dynamical system with discrete time (or, a cascade) similar definitions and the same terminology are used (now in the above the sequences $\{t_k\}$ have to be in $\mathbf Z$).

How to Cite This Entry:
Limit point of a trajectory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Limit_point_of_a_trajectory&oldid=17356
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article