Namespaces
Variants
Actions

Difference between revisions of "Lie group, semi-simple"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex done)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A connected [[Lie group|Lie group]] that does not contain non-trivial connected solvable (or, equivalently, connected Abelian) normal subgroups. A connected Lie group is semi-simple if and only if its Lie algebra is semi-simple (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]). A connected Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586801.png" /> is said to be simple if its Lie algebra is simple, that is, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586802.png" /> does not contain non-trivial connected normal subgroups other than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586803.png" />. A connected Lie group is semi-simple if and only if it splits into a locally direct product of simple non-Abelian normal subgroups.
+
{{TEX|done}}
 +
A connected [[Lie group|Lie group]] that does not contain non-trivial connected solvable (or, equivalently, connected Abelian) normal subgroups. A connected Lie group is semi-simple if and only if its Lie algebra is semi-simple (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]). A connected Lie group $  G $  is said to be simple if its Lie algebra is simple, that is, if $  G $  does not contain non-trivial connected normal subgroups other than $  G $ . A connected Lie group is semi-simple if and only if it splits into a locally direct product of simple non-Abelian normal subgroups.
  
The classification of semi-simple Lie groups reduces to the local classification, that is, to the classification of semi-simple Lie algebras (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]), and also to the global classification of the Lie groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586804.png" /> that correspond to a given semi-simple Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586805.png" />.
+
The classification of semi-simple Lie groups reduces to the local classification, that is, to the classification of semi-simple Lie algebras (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]), and also to the global classification of the Lie groups $  G $  that correspond to a given semi-simple Lie algebra $  \mathfrak g $ .
  
In the case of Lie groups over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586806.png" /> of complex numbers the main result of the local classification is that every simply-connected simple non-Abelian complex Lie group is isomorphic to one of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586807.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586808.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l0586809.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868010.png" /> (the universal covering of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868011.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868013.png" /> (see [[Classical group|Classical group]]), or one of the exceptional complex Lie groups (see [[Lie algebra, exceptional|Lie algebra, exceptional]]). The global classification of the Lie groups corresponding to a semi-simple Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868014.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868015.png" /> goes as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868016.png" /> be a [[Cartan subalgebra|Cartan subalgebra]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868017.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868018.png" /> be the [[Root system|root system]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868019.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868020.png" />. To every semi-simple Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868021.png" /> with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868022.png" /> corresponds a lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868023.png" /> that is the kernel of the [[Exponential mapping|exponential mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868024.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868025.png" /> is simply connected, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868026.png" /> coincides with the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868027.png" /> generated by the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868029.png" /> (see [[Lie algebra, semi-simple|Lie algebra, semi-simple]]), and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868030.png" /> is a group without centre (an adjoint group), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868031.png" /> is the lattice
+
In the case of Lie groups over the field $  \mathbf C $  of complex numbers the main result of the local classification is that every simply-connected simple non-Abelian complex Lie group is isomorphic to one of the groups $  \mathop{\rm SL}\nolimits _{n+1} ( \mathbf C ) $ , $  n \geq 1 $ , $  \mathop{\rm Spin}\nolimits _{n} ( \mathbf C ) $ , $  n \geq 5 $  (the universal covering of the group $  \mathop{\rm SO}\nolimits _{n} ( \mathbf C ) $ ), $  \mathop{\rm Sp}\nolimits _{n} ( \mathbf C ) $ , $  n \geq 3 $  (see [[Classical group|Classical group]]), or one of the exceptional complex Lie groups (see [[Lie algebra, exceptional|Lie algebra, exceptional]]). The global classification of the Lie groups corresponding to a semi-simple Lie algebra $  \mathfrak g $  over $  \mathbf C $  goes as follows. Let $  \mathfrak h $  be a [[Cartan subalgebra|Cartan subalgebra]] of $  \mathfrak g $  and let $  \Sigma $  be the [[Root system|root system]] of $  \mathfrak g $  with respect to $  \mathfrak h $ . To every semi-simple Lie group $  G $  with Lie algebra $  \mathfrak g $  corresponds a lattice $  \Gamma (G) \subset \mathfrak h $  that is the kernel of the [[Exponential mapping|exponential mapping]] $  \mathop{\rm exp}\nolimits : \  \mathfrak h \rightarrow G $ . In particular, if $  G $  is simply connected, then $  \Gamma (G) $  coincides with the lattice $  \Gamma _{0} = \Gamma _{0} ( \mathfrak g ) $  generated by the elements $  2 \pi i H _ \alpha  $ , $  \alpha \in \Sigma $  (see [[Lie algebra, semi-simple|Lie algebra, semi-simple]]), and if $  G $  is a group without centre (an adjoint group), then $  \Gamma (G) $  is the lattice $$
 
+
\Gamma _{1}  =   \Gamma _{1} ( \mathfrak g )  =
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868032.png" /></td> </tr></table>
+
\{ {X \in \mathfrak h} : {\alpha (X) \in 2 \pi i \mathbf Z 
 
+
\textrm{ for  all }  \alpha \in \Sigma} \}
In the general case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868033.png" />. For any additive subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868034.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868035.png" /> there is a unique (up to isomorphism) connected Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868036.png" /> with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868037.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868038.png" />. The centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868039.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868040.png" />, and for the [[Fundamental group|fundamental group]] one has:
+
.
 
+
$$ In the general case $  \Gamma _{0} \subset \Gamma (G) \subset \Gamma _{1} $ . For any additive subgroup $  M \subset \mathfrak h $  satisfying the condition $  \Gamma _{0} \subset M \subset \Gamma _{1} $  there is a unique (up to isomorphism) connected Lie group $  G $  with Lie algebra $  \mathfrak g $  such that $  \Gamma (G) = M $ . The centre of $  G $  is isomorphic to $  \Gamma _{1} / \Gamma (G) $ , and for the [[Fundamental group|fundamental group]] one has: $$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868041.png" /></td> </tr></table>
+
\pi _{1} (G)  \cong  \Gamma (G) / \Gamma _{0} .
 
+
$$ The quotient group $  Z _ {\mathfrak g} = \Gamma _{1} / \Gamma _{0} $  (the centre of the simply-connected Lie group with Lie algebra $  \mathfrak g $ ) is finite and for the different types of simple Lie algebras $  \mathfrak g $  it has the following form:
The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868042.png" /> (the centre of the simply-connected Lie group with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868043.png" />) is finite and for the different types of simple Lie algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868044.png" /> it has the following form:''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868045.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868046.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868047.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868048.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868049.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868050.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868051.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868052.png" /></td> <td colname="9" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868055.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868056.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868057.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868058.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868059.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868060.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868061.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868062.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868063.png" /></td> <td colname="9" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868064.png" /></td> </tr> </tbody> </table>
 
  
 +
<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \mathfrak g $ </td> <td colname="2" style="background-color:white;" colspan="1"> $  A _{n} $ </td> <td colname="3" style="background-color:white;" colspan="1"> $  B _{n} $ </td> <td colname="4" style="background-color:white;" colspan="1"> $  C _{n} $ </td> <td colname="5" style="background-color:white;" colspan="1"> $  D _{2n} $ </td> <td colname="6" style="background-color:white;" colspan="1"> $  D _{2n+1} $ </td> <td colname="7" style="background-color:white;" colspan="1"> $  E _{6} $ </td> <td colname="8" style="background-color:white;" colspan="1"> $  E _{7} $ </td> <td colname="9" style="background-color:white;" colspan="1"> $  E _{8} $ ,  $  F _{4} $ ,  $  G _{2} $ </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  Z _{\mathfrak g} $ </td> <td colname="2" style="background-color:white;" colspan="1"> $  \mathbf Z _{n+1} $ </td> <td colname="3" style="background-color:white;" colspan="1"> $  \mathbf Z _{2} $ </td> <td colname="4" style="background-color:white;" colspan="1"> $  \mathbf Z _{2} $ </td> <td colname="5" style="background-color:white;" colspan="1"> $  \mathbf Z _{2} \oplus \mathbf Z _{2} $ </td> <td colname="6" style="background-color:white;" colspan="1"> $  \mathbf Z _{4} $ </td> <td colname="7" style="background-color:white;" colspan="1"> $  \mathbf Z _{3} $ </td> <td colname="8" style="background-color:white;" colspan="1"> $  \mathbf Z _{2} $ </td> <td colname="9" style="background-color:white;" colspan="1"> $  0 $ </td> </tr> </tbody> </table>
 
</td></tr> </table>
 
</td></tr> </table>
  
The order of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868065.png" /> is the same as the number of vertices with coefficient 1 in the extended [[Dynkin diagram|Dynkin diagram]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868066.png" />; discarding one of the vertices gives the Dynkin diagram. A similar classification holds for compact real semi-simple Lie groups, each of which is imbedded in a unique complex semi-simple Lie group as a maximal compact subgroup (see [[Lie group, compact|Lie group, compact]]).
+
The order of the group $  \Gamma _{1} / \Gamma _{0} $  is the same as the number of vertices with coefficient 1 in the extended [[Dynkin diagram|Dynkin diagram]] of $  \mathfrak g $ ; discarding one of the vertices gives the Dynkin diagram. A similar classification holds for compact real semi-simple Lie groups, each of which is imbedded in a unique complex semi-simple Lie group as a maximal compact subgroup (see [[Lie group, compact|Lie group, compact]]).
  
The global classification of non-compact real semi-simple Lie groups can be carried out in a similar but more complicated way. In particular, the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868067.png" /> of the simply-connected Lie group corresponding to a semi-simple Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868068.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868069.png" /> can be calculated as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868070.png" /> be the [[Cartan decomposition|Cartan decomposition]], where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868071.png" /> is a maximal compact subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868073.png" /> is its orthogonal complement with respect to the Killing form, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868074.png" /> be the corresponding involutive automorphism, extended to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868076.png" /> the Cartan subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868077.png" /> containing a Cartan subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868079.png" /> an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868080.png" /> that coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868081.png" /> on the roots with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868082.png" /> and extended to the root vectors in an appropriate way, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868083.png" /> the Cartan decomposition of the real form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868084.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868085.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868086.png" /> (see [[#References|[3]]], where this group is calculated for all types of simple algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868087.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868088.png" />).
+
The global classification of non-compact real semi-simple Lie groups can be carried out in a similar but more complicated way. In particular, the centre $  Z _ {\mathfrak g} $  of the simply-connected Lie group corresponding to a semi-simple Lie algebra $  \mathfrak g $  over $  \mathbf R $  can be calculated as follows. Let $  \mathfrak g = \mathfrak k + \mathfrak p $  be the [[Cartan decomposition|Cartan decomposition]], where $  \mathfrak k $  is a maximal compact subalgebra of $  \mathfrak g $  and $  \mathfrak p $  is its orthogonal complement with respect to the Killing form, let $  \theta $  be the corresponding involutive automorphism, extended to $  \mathfrak g ^ {\mathbf C} $ , $  \mathfrak h $  the Cartan subalgebra of $  \mathfrak g ^ {\mathbf C} $  containing a Cartan subalgebra $  \mathfrak h ^ \prime  \subset \mathfrak k $ , $  \theta _{0} $  an automorphism of $  \mathfrak g ^ {\mathbf C} $  that coincides with $  \theta $  on the roots with respect to $  \mathfrak h $  and extended to the root vectors in an appropriate way, and $  \mathfrak g _{0} = \mathfrak k _{0} + \mathfrak p _{0} $  the Cartan decomposition of the real form $  \mathfrak g \subset \mathfrak g ^ {\mathbf C} $  corresponding to $  \theta _{0} $ . Then $  Z _{\mathfrak g} \cong \Gamma _{1} ( \mathfrak k _{0} ) / \Gamma _{0} [ \mathfrak k ,\  \mathfrak k ] $  (see [[#References|[3]]], where this group is calculated for all types of simple algebras $  \mathfrak g $  over $  \mathbf R $ ).
  
Every complex semi-simple Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868089.png" /> has the unique structure of an affine algebraic group compatible with the analytic structure specified on it, and any analytic homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868090.png" /> to an algebraic group is rational. The corresponding algebra of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868091.png" /> coincides with the algebra of holomorphic representation functions. On the other hand, a non-compact real semi-simple Lie group does not always admit a faithful linear representation — the simplest example is the simply-connected Lie group corresponding to the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868092.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868093.png" /> is a semi-simple Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868094.png" />, then in the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868095.png" /> of the simply-connected group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868096.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868097.png" /> there is a smallest subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868098.png" />, called the linearizer, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868099.png" /> is isomorphic to a linear semi-simple Lie group. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680100.png" /> is the compact real form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680101.png" />, then
+
Every complex semi-simple Lie group $  G $  has the unique structure of an affine algebraic group compatible with the analytic structure specified on it, and any analytic homomorphism of $  G $  to an algebraic group is rational. The corresponding algebra of regular functions on $  G $  coincides with the algebra of holomorphic representation functions. On the other hand, a non-compact real semi-simple Lie group does not always admit a faithful linear representation — the simplest example is the simply-connected Lie group corresponding to the Lie algebra $  \mathop{\rm sl}\nolimits ( 2 ,\  \mathbf R ) $ . If $  \mathfrak g $  is a semi-simple Lie algebra over $  \mathbf R $ , then in the centre $  Z _{\mathfrak g} $  of the simply-connected group $  G _{0} $  corresponding to $  \mathfrak g $  there is a smallest subgroup $  {\mathbf L} ( \mathfrak g ) $ , called the linearizer, such that $  G _{0} / {\mathbf L} ( \mathfrak g ) $  is isomorphic to a linear semi-simple Lie group. If $  \mathfrak u = \mathfrak k + i \mathfrak u $  is the compact real form of $  \mathfrak g ^{\mathbf C} $ , then $$
 
+
{\mathbf L} ( \mathfrak g )  \cong  \Gamma _{0} ( \mathfrak u ) \cap \mathfrak h ^ \prime
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680102.png" /></td> </tr></table>
+
/ \Gamma _{0} ( [ \mathfrak k ,\  \mathfrak k ] )
 
+
$$ (see [[#References|[3]]], where this group is calculated for all types of simple Lie algebras $  \mathfrak g $ ).
(see [[#References|[3]]], where this group is calculated for all types of simple Lie algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680103.png" />).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.F. Adams,   "Lectures on Lie groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre,   "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Sirota,   A.S. Solodovnikov,   "Noncompact semisimple Lie groups" ''Russian Math. Surveys'' , '''18''' : 3 (1963) pp. 85–140 ''Uspekhi Mat. Nauk'' , '''18''' : 3 (1963) pp. 87–144</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.F. Adams, "Lectures on Lie groups" , Benjamin (1969) {{MR|0252560}} {{ZBL|0206.31604}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) {{MR|0218496}} {{ZBL|0132.27803}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Sirota, A.S. Solodovnikov, "Noncompact semisimple Lie groups" ''Russian Math. Surveys'' , '''18''' : 3 (1963) pp. 85–140 ''Uspekhi Mat. Nauk'' , '''18''' : 3 (1963) pp. 87–144 {{MR|155929}} {{ZBL|0132.02101}} </TD></TR></table>
  
  
  
 
====Comments====
 
====Comments====
The (infinite-dimensional) representation theory of semi-simple Lie groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680104.png" /> has been created for a large part by Harish-Chandra. See also the excellent survey of Harish-Chandra's work by V.S. Varadarajan in the collected works [[#References|[a1]]].
+
The (infinite-dimensional) representation theory of semi-simple Lie groups over $  \mathbf R $  has been created for a large part by Harish-Chandra. See also the excellent survey of Harish-Chandra's work by V.S. Varadarajan in the collected works [[#References|[a1]]].
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680105.png" /> reductions of semi-simple Lie groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680106.png" /> are called the Chevalley groups (cf. [[Chevalley group|Chevalley group]]), and from them most of the finite simple groups can be obtained (with the exception of the [[Alternating group|alternating group]] and the 26 sporadic groups, cf. [[Sporadic simple group|Sporadic simple group]]). For a survey of the structure and representation theory of the Chevalley groups see [[#References|[a2]]].
+
The $  \mathop{\rm mod}\nolimits \  p $  reductions of semi-simple Lie groups over $  \mathbf Z $  are called the Chevalley groups (cf. [[Chevalley group|Chevalley group]]), and from them most of the finite simple groups can be obtained (with the exception of the [[Alternating group|alternating group]] and the 26 sporadic groups, cf. [[Sporadic simple group|Sporadic simple group]]). For a survey of the structure and representation theory of the Chevalley groups see [[#References|[a2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Harish-Chandra,   "Collected works" , '''1–4''' , Springer (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.W. Carter,   "Finite groups of Lie type: Conjugacy classes and complex characters" , Wiley (Interscience) (1985)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Wolf,   "Spaces of constant curvature" , Publish or Perish (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Hochschild,   "The structure of Lie groups" , Holden-Day (1965)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Harish-Chandra, "Collected works" , '''1–4''' , Springer (1984) {{MR|}} {{ZBL|0699.62084}} {{ZBL|0653.01018}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.W. Carter, "Finite groups of Lie type: Conjugacy classes and complex characters" , Wiley (Interscience) (1985)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Wolf, "Spaces of constant curvature" , Publish or Perish (1974) {{MR|0343214}} {{ZBL|0281.53034}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Hochschild, "The structure of Lie groups" , Holden-Day (1965) {{MR|0207883}} {{ZBL|0131.02702}} </TD></TR></table>
 +
 
 +
[[Category:Lie theory and generalizations]]

Latest revision as of 18:15, 12 December 2019

A connected Lie group that does not contain non-trivial connected solvable (or, equivalently, connected Abelian) normal subgroups. A connected Lie group is semi-simple if and only if its Lie algebra is semi-simple (cf. Lie algebra, semi-simple). A connected Lie group $ G $ is said to be simple if its Lie algebra is simple, that is, if $ G $ does not contain non-trivial connected normal subgroups other than $ G $ . A connected Lie group is semi-simple if and only if it splits into a locally direct product of simple non-Abelian normal subgroups.

The classification of semi-simple Lie groups reduces to the local classification, that is, to the classification of semi-simple Lie algebras (cf. Lie algebra, semi-simple), and also to the global classification of the Lie groups $ G $ that correspond to a given semi-simple Lie algebra $ \mathfrak g $ .

In the case of Lie groups over the field $ \mathbf C $ of complex numbers the main result of the local classification is that every simply-connected simple non-Abelian complex Lie group is isomorphic to one of the groups $ \mathop{\rm SL}\nolimits _{n+1} ( \mathbf C ) $ , $ n \geq 1 $ , $ \mathop{\rm Spin}\nolimits _{n} ( \mathbf C ) $ , $ n \geq 5 $ (the universal covering of the group $ \mathop{\rm SO}\nolimits _{n} ( \mathbf C ) $ ), $ \mathop{\rm Sp}\nolimits _{n} ( \mathbf C ) $ , $ n \geq 3 $ (see Classical group), or one of the exceptional complex Lie groups (see Lie algebra, exceptional). The global classification of the Lie groups corresponding to a semi-simple Lie algebra $ \mathfrak g $ over $ \mathbf C $ goes as follows. Let $ \mathfrak h $ be a Cartan subalgebra of $ \mathfrak g $ and let $ \Sigma $ be the root system of $ \mathfrak g $ with respect to $ \mathfrak h $ . To every semi-simple Lie group $ G $ with Lie algebra $ \mathfrak g $ corresponds a lattice $ \Gamma (G) \subset \mathfrak h $ that is the kernel of the exponential mapping $ \mathop{\rm exp}\nolimits : \ \mathfrak h \rightarrow G $ . In particular, if $ G $ is simply connected, then $ \Gamma (G) $ coincides with the lattice $ \Gamma _{0} = \Gamma _{0} ( \mathfrak g ) $ generated by the elements $ 2 \pi i H _ \alpha $ , $ \alpha \in \Sigma $ (see Lie algebra, semi-simple), and if $ G $ is a group without centre (an adjoint group), then $ \Gamma (G) $ is the lattice $$ \Gamma _{1} = \Gamma _{1} ( \mathfrak g ) = \{ {X \in \mathfrak h} : {\alpha (X) \in 2 \pi i \mathbf Z \textrm{ for all } \alpha \in \Sigma} \} . $$ In the general case $ \Gamma _{0} \subset \Gamma (G) \subset \Gamma _{1} $ . For any additive subgroup $ M \subset \mathfrak h $ satisfying the condition $ \Gamma _{0} \subset M \subset \Gamma _{1} $ there is a unique (up to isomorphism) connected Lie group $ G $ with Lie algebra $ \mathfrak g $ such that $ \Gamma (G) = M $ . The centre of $ G $ is isomorphic to $ \Gamma _{1} / \Gamma (G) $ , and for the fundamental group one has: $$ \pi _{1} (G) \cong \Gamma (G) / \Gamma _{0} . $$ The quotient group $ Z _ {\mathfrak g} = \Gamma _{1} / \Gamma _{0} $ (the centre of the simply-connected Lie group with Lie algebra $ \mathfrak g $ ) is finite and for the different types of simple Lie algebras $ \mathfrak g $ it has the following form:

<tbody> </tbody>
$ \mathfrak g $ $ A _{n} $ $ B _{n} $ $ C _{n} $ $ D _{2n} $ $ D _{2n+1} $ $ E _{6} $ $ E _{7} $ $ E _{8} $ , $ F _{4} $ , $ G _{2} $
$ Z _{\mathfrak g} $ $ \mathbf Z _{n+1} $ $ \mathbf Z _{2} $ $ \mathbf Z _{2} $ $ \mathbf Z _{2} \oplus \mathbf Z _{2} $ $ \mathbf Z _{4} $ $ \mathbf Z _{3} $ $ \mathbf Z _{2} $ $ 0 $

The order of the group $ \Gamma _{1} / \Gamma _{0} $ is the same as the number of vertices with coefficient 1 in the extended Dynkin diagram of $ \mathfrak g $ ; discarding one of the vertices gives the Dynkin diagram. A similar classification holds for compact real semi-simple Lie groups, each of which is imbedded in a unique complex semi-simple Lie group as a maximal compact subgroup (see Lie group, compact).

The global classification of non-compact real semi-simple Lie groups can be carried out in a similar but more complicated way. In particular, the centre $ Z _ {\mathfrak g} $ of the simply-connected Lie group corresponding to a semi-simple Lie algebra $ \mathfrak g $ over $ \mathbf R $ can be calculated as follows. Let $ \mathfrak g = \mathfrak k + \mathfrak p $ be the Cartan decomposition, where $ \mathfrak k $ is a maximal compact subalgebra of $ \mathfrak g $ and $ \mathfrak p $ is its orthogonal complement with respect to the Killing form, let $ \theta $ be the corresponding involutive automorphism, extended to $ \mathfrak g ^ {\mathbf C} $ , $ \mathfrak h $ the Cartan subalgebra of $ \mathfrak g ^ {\mathbf C} $ containing a Cartan subalgebra $ \mathfrak h ^ \prime \subset \mathfrak k $ , $ \theta _{0} $ an automorphism of $ \mathfrak g ^ {\mathbf C} $ that coincides with $ \theta $ on the roots with respect to $ \mathfrak h $ and extended to the root vectors in an appropriate way, and $ \mathfrak g _{0} = \mathfrak k _{0} + \mathfrak p _{0} $ the Cartan decomposition of the real form $ \mathfrak g \subset \mathfrak g ^ {\mathbf C} $ corresponding to $ \theta _{0} $ . Then $ Z _{\mathfrak g} \cong \Gamma _{1} ( \mathfrak k _{0} ) / \Gamma _{0} [ \mathfrak k ,\ \mathfrak k ] $ (see [3], where this group is calculated for all types of simple algebras $ \mathfrak g $ over $ \mathbf R $ ).

Every complex semi-simple Lie group $ G $ has the unique structure of an affine algebraic group compatible with the analytic structure specified on it, and any analytic homomorphism of $ G $ to an algebraic group is rational. The corresponding algebra of regular functions on $ G $ coincides with the algebra of holomorphic representation functions. On the other hand, a non-compact real semi-simple Lie group does not always admit a faithful linear representation — the simplest example is the simply-connected Lie group corresponding to the Lie algebra $ \mathop{\rm sl}\nolimits ( 2 ,\ \mathbf R ) $ . If $ \mathfrak g $ is a semi-simple Lie algebra over $ \mathbf R $ , then in the centre $ Z _{\mathfrak g} $ of the simply-connected group $ G _{0} $ corresponding to $ \mathfrak g $ there is a smallest subgroup $ {\mathbf L} ( \mathfrak g ) $ , called the linearizer, such that $ G _{0} / {\mathbf L} ( \mathfrak g ) $ is isomorphic to a linear semi-simple Lie group. If $ \mathfrak u = \mathfrak k + i \mathfrak u $ is the compact real form of $ \mathfrak g ^{\mathbf C} $ , then $$ {\mathbf L} ( \mathfrak g ) \cong \Gamma _{0} ( \mathfrak u ) \cap \mathfrak h ^ \prime / \Gamma _{0} ( [ \mathfrak k ,\ \mathfrak k ] ) $$ (see [3], where this group is calculated for all types of simple Lie algebras $ \mathfrak g $ ).

References

[1] J.F. Adams, "Lectures on Lie groups" , Benjamin (1969) MR0252560 Zbl 0206.31604
[2] J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) MR0218496 Zbl 0132.27803
[3] A.I. Sirota, A.S. Solodovnikov, "Noncompact semisimple Lie groups" Russian Math. Surveys , 18 : 3 (1963) pp. 85–140 Uspekhi Mat. Nauk , 18 : 3 (1963) pp. 87–144 MR155929 Zbl 0132.02101


Comments

The (infinite-dimensional) representation theory of semi-simple Lie groups over $ \mathbf R $ has been created for a large part by Harish-Chandra. See also the excellent survey of Harish-Chandra's work by V.S. Varadarajan in the collected works [a1].

The $ \mathop{\rm mod}\nolimits \ p $ reductions of semi-simple Lie groups over $ \mathbf Z $ are called the Chevalley groups (cf. Chevalley group), and from them most of the finite simple groups can be obtained (with the exception of the alternating group and the 26 sporadic groups, cf. Sporadic simple group). For a survey of the structure and representation theory of the Chevalley groups see [a2].

References

[a1] Harish-Chandra, "Collected works" , 1–4 , Springer (1984) Zbl 0699.62084 Zbl 0653.01018
[a2] R.W. Carter, "Finite groups of Lie type: Conjugacy classes and complex characters" , Wiley (Interscience) (1985)
[a3] J.A. Wolf, "Spaces of constant curvature" , Publish or Perish (1974) MR0343214 Zbl 0281.53034
[a4] G. Hochschild, "The structure of Lie groups" , Holden-Day (1965) MR0207883 Zbl 0131.02702
How to Cite This Entry:
Lie group, semi-simple. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_group,_semi-simple&oldid=18993
This article was adapted from an original article by r group','../u/u095350.htm','Unitary transformation','../u/u095590.htm','Vector bundle, analytic','../v/v096400.htm')" style="background-color:yellow;">A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article