Namespaces
Variants
Actions

Difference between revisions of "Lie algebra of an analytic group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''Lie algebra of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584901.png" /> defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584902.png" /> that is complete with respect to a non-trivial [[Absolute value|absolute value]]''
+
<!--
 +
l0584901.png
 +
$#A+1 = 135 n = 0
 +
$#C+1 = 135 : ~/encyclopedia/old_files/data/L058/L.0508490 Lie algebra of an analytic group,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584903.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584904.png" /> regarded as local Lie group (cf. [[Lie group, local|Lie group, local]]). Thus, as a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584905.png" /> is identified with the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584906.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584907.png" />. The multiplication operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584908.png" /> in the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l0584909.png" /> can be defined in any of the following equivalent ways.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
1) Let ad be the differential of the adjoint representation of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849010.png" /> (cf. [[Adjoint representation of a Lie group|Adjoint representation of a Lie group]]). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849011.png" />, for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849012.png" />, is a linear transformation of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849014.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849015.png" />.
+
''Lie algebra of a Lie group $  G $
 +
defined over a field  $  k $
 +
that is complete with respect to a non-trivial [[Absolute value|absolute value]]''
  
2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849016.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849017.png" /> be two tangent vectors to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849018.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849019.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849021.png" /> be smooth curves in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849022.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849024.png" /> are tangent vectors for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849026.png" /> is the tangent vector for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849027.png" /> to the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849030.png" />.
+
The [[Lie algebra|Lie algebra]]  $  \mathfrak g $
 +
of  $  G $
 +
regarded as local Lie group (cf. [[Lie group, local|Lie group, local]]). Thus, as a vector space  $  \mathfrak g $
 +
is identified with the tangent space to $  G $
 +
at the point  $  e $.  
 +
The multiplication operation  $  [  , ] $
 +
in the Lie algebra  $  \mathfrak g $
 +
can be defined in any of the following equivalent ways.
  
3) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849031.png" /> be the associative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849032.png" />-algebra of generalized functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849033.png" /> with support at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849034.png" /> and with multiplication defined by the convolution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849035.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849036.png" /> is identified with the set of primitive elements (cf. [[Hopf algebra|Hopf algebra]]) of the bi-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849037.png" />, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849038.png" /> the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849039.png" /> also lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849040.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849041.png" />.
+
1) Let ad be the differential of the adjoint representation of the group  $  G $(
 +
cf. [[Adjoint representation of a Lie group|Adjoint representation of a Lie group]]). Then  $  \mathop{\rm ad}  X $,
 +
for any vector  $  X \in \mathfrak g $,
 +
is a linear transformation of the space  $  \mathfrak g $
 +
and  $  \mathop{\rm ad}  X ( Y) = [ X , Y ] $
 +
for any $  Y \in \mathfrak g $.
  
4) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849042.png" /> be the vector space of all vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849043.png" /> that are invariant with respect to left translation by elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849044.png" />. The correspondence between the vector field and its value at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849045.png" /> is an isomorphism of the vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849047.png" />. On the other hand, to any vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849048.png" /> corresponds a left-invariant derivation of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849049.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849050.png" /> of analytic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849051.png" /> by means of the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849052.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849054.png" />, and this correspondence is an isomorphism of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849055.png" /> to the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849056.png" /> of all left-invariant derivations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849057.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849058.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849059.png" /> denote the left-invariant vector field for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849060.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849061.png" />, then the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849062.png" /> can be defined as the vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849063.png" /> for which the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849064.png" /> specifies the derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849065.png" /> of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849066.png" />.
+
2) Let $  k = \mathbf R $,
 +
let  $  X , Y \in \mathfrak g $
 +
be two tangent vectors to $  G $
 +
at  $  e $
 +
and let  $  x ( t) $
 +
and $  y ( t) $
 +
be smooth curves in  $  G $
 +
for which  $  X $
 +
and $  Y $
 +
are tangent vectors for $  t = 0 $.  
 +
Then  $  [ X , Y ] $
 +
is the tangent vector for  $  s = 0 $
 +
to the curve  $  q ( t) = x ( s) y ( s) x ( s)  ^ {-} 1 y ( s)  ^ {-} 1 $,  
 +
where  $  s \geq  0 $
 +
and  $  s  ^ {2} = t $.
  
Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849067.png" /> be the analytic group of all non-singular matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849068.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849069.png" />. Then the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849070.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849071.png" /> at the identity is identified with the space of all matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849072.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849073.png" />, and a Lie algebra structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849074.png" /> is defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849075.png" />.
+
3) Let $  U ( G) $
 +
be the associative  $  k $-
 +
algebra of generalized functions on  $  G $
 +
with support at  $  e $
 +
and with multiplication defined by the convolution  $  \star $.  
 +
The space $  \mathfrak g $
 +
is identified with the set of primitive elements (cf. [[Hopf algebra|Hopf algebra]]) of the bi-algebra  $  U ( G) $,  
 +
and for any  $  X , Y \in \mathfrak g $
 +
the vector  $  X \star Y - Y \star X $
 +
also lies in  $  \mathfrak g $.  
 +
Then  $  X \star Y - Y \star X = [ X , Y ] $.
  
The correspondence between an analytic group and its Lie algebra has important functorial properties and significantly reduces the study of analytic groups to the study of their Lie algebras. Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849077.png" /> be analytic groups with Lie algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849079.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849080.png" /> be an analytic homomorphism. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849081.png" /> is a homomorphism of Lie algebras. The Lie algebra of the analytic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849082.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849083.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849084.png" /> is the Lie algebra of an analytic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849086.png" /> is a Lie subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849087.png" /> (see [[Lie group|Lie group]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849088.png" /> is the Lie algebra of the analytic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849089.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849090.png" /> is a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849091.png" />, while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849092.png" /> is normal, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849093.png" /> is an ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849094.png" />. Suppose that the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849095.png" /> is zero. The Lie algebra of an intersection of Lie subgroups coincides with the intersection of their Lie algebras. The Lie algebra of the kernel of a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849096.png" /> of analytic groups is the kernel of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849097.png" /> of their Lie algebras. The Lie algebra of the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849098.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l05849099.png" /> is an analytic normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490100.png" />, is the quotient algebra of the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490101.png" /> with respect to the ideal corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490102.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490103.png" /> is the Lie algebra of an analytic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490105.png" /> is a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490106.png" />, then there is a unique connected Lie subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490107.png" /> with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490108.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490109.png" /> need not be closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490110.png" />. The Lie algebra of an analytic group is solvable (nilpotent, semi-simple) if and only if the group itself is solvable (nilpotent, semi-simple).
+
4) Let  $  {\mathcal L} $
 +
be the vector space of all vector fields on  $  G $
 +
that are invariant with respect to left translation by elements of  $  G $.
 +
The correspondence between the vector field and its value at the point  $  e \in G $
 +
is an isomorphism of the vector spaces  $  {\mathcal L} $
 +
and  $  \mathfrak g $.  
 +
On the other hand, to any vector field  $  L \in {\mathcal L} $
 +
corresponds a left-invariant derivation of the $  k $-
 +
algebra $  A $
 +
of analytic functions on  $  G $
 +
by means of the formula  $  L ( f  ) ( g) = ( df  ) _ {g} ( L _ {g} ) $
 +
for any  $  f \in A $,  
 +
$  g \in G $,  
 +
and this correspondence is an isomorphism of the space  $  {\mathcal L} $
 +
to the vector space  $  D $
 +
of all left-invariant derivations of $  A $.  
 +
For any  $  X \in \mathfrak g $,
 +
let  $  L _ {X} \in {\mathcal L} $
 +
denote the left-invariant vector field for which  $  {( L _ {X} ) } _ {e} = X $.  
 +
If  $  X , Y \in \mathfrak g $,  
 +
then the product  $  [ X , Y ] $
 +
can be defined as the vector of $  \mathfrak g $
 +
for which the field  $  L _ {[ X , Y ] }  $
 +
specifies the derivation  $  L _ {X} \cdot L _ {Y} - L _ {Y} \cdot L _ {X} $
 +
of the algebra $  A $.
  
This connection between the categories of analytic groups and Lie algebras is not, however, an equivalence of these categories, in contrast to the case of local Lie groups. Namely, non-isomorphic analytic groups can have isomorphic Lie algebras. Analytic groups with isomorphic Lie algebras are said to be locally isomorphic. In the case of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490111.png" /> of characteristic zero, to each finite-dimensional Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490112.png" /> corresponds a class of locally isomorphic analytic groups. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490113.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490114.png" />. Among all locally isomorphic analytic groups there is a connected simply-connected group, which is unique up to isomorphism; the category of analytic groups of this type is equivalent to the category of finite-dimensional Lie algebras over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490115.png" />. In particular, every homomorphism of Lie algebras is induced by an analytic homomorphism of the corresponding connected simply-connected analytic groups. Any connected Lie group that is locally isomorphic to a given connected simply-connected Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490116.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490117.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490118.png" /> is a discrete normal subgroup lying in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490119.png" />.
+
Example. Let  $  G $
 +
be the analytic group of all non-singular matrices of order  $  n $
 +
with coefficients in  $  k $.
 +
Then the tangent space  $  \mathfrak g $
 +
to  $  G $
 +
at the identity is identified with the space of all matrices of order  $  n $
 +
with coefficients in  $  k $,
 +
and a Lie algebra structure on  $  \mathfrak g $
 +
is defined by the formula  $  [ X , Y ] = XY - YX $.
 +
 
 +
The correspondence between an analytic group and its Lie algebra has important functorial properties and significantly reduces the study of analytic groups to the study of their Lie algebras. Namely, let  $  G _ {1} $
 +
and  $  G _ {2} $
 +
be analytic groups with Lie algebras  $  \mathfrak g _ {1} $
 +
and  $  \mathfrak g _ {2} $
 +
and let  $  \phi :  G _ {1} \rightarrow G _ {2} $
 +
be an analytic homomorphism. Then  $  d \phi _ {e} :  \mathfrak g _ {1} \rightarrow \mathfrak g _ {2} $
 +
is a homomorphism of Lie algebras. The Lie algebra of the analytic group  $  G _ {1} \times G _ {2} $
 +
is isomorphic to  $  \mathfrak g _ {1} \oplus \mathfrak g _ {2} $.
 +
If  $  \mathfrak g $
 +
is the Lie algebra of an analytic group  $  G $,
 +
$  H $
 +
is a Lie subgroup of  $  G $(
 +
see [[Lie group|Lie group]]) and  $  \mathfrak h $
 +
is the Lie algebra of the analytic group  $  H $,
 +
then  $  \mathfrak h $
 +
is a subalgebra of  $  \mathfrak g $,
 +
while if  $  H $
 +
is normal, then  $  \mathfrak h $
 +
is an ideal of  $  \mathfrak g $.
 +
Suppose that the characteristic of  $  k $
 +
is zero. The Lie algebra of an intersection of Lie subgroups coincides with the intersection of their Lie algebras. The Lie algebra of the kernel of a homomorphism  $  \phi $
 +
of analytic groups is the kernel of the homomorphism  $  d \phi _ {e} $
 +
of their Lie algebras. The Lie algebra of the quotient group  $  G / H $,
 +
where  $  H $
 +
is an analytic normal subgroup of  $  G $,
 +
is the quotient algebra of the Lie algebra of  $  G $
 +
with respect to the ideal corresponding to  $  H $.
 +
If  $  \mathfrak g $
 +
is the Lie algebra of an analytic group  $  G $
 +
and  $  \mathfrak h $
 +
is a subalgebra of  $  \mathfrak g $,
 +
then there is a unique connected Lie subgroup  $  H \subset  G $
 +
with Lie algebra  $  \mathfrak h $;
 +
$  H $
 +
need not be closed in  $  G $.
 +
The Lie algebra of an analytic group is solvable (nilpotent, semi-simple) if and only if the group itself is solvable (nilpotent, semi-simple).
 +
 
 +
This connection between the categories of analytic groups and Lie algebras is not, however, an equivalence of these categories, in contrast to the case of local Lie groups. Namely, non-isomorphic analytic groups can have isomorphic Lie algebras. Analytic groups with isomorphic Lie algebras are said to be locally isomorphic. In the case of a field $  k $
 +
of characteristic zero, to each finite-dimensional Lie algebra over $  k $
 +
corresponds a class of locally isomorphic analytic groups. Suppose that $  k = \mathbf R $
 +
or $  \mathbf C $.  
 +
Among all locally isomorphic analytic groups there is a connected simply-connected group, which is unique up to isomorphism; the category of analytic groups of this type is equivalent to the category of finite-dimensional Lie algebras over $  k $.  
 +
In particular, every homomorphism of Lie algebras is induced by an analytic homomorphism of the corresponding connected simply-connected analytic groups. Any connected Lie group that is locally isomorphic to a given connected simply-connected Lie group $  G $
 +
has the form $  G / D $,  
 +
where $  D $
 +
is a discrete normal subgroup lying in the centre of $  G $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.-P. Serre,  "Lie algebras and Lie groups" , Benjamin  (1965)  (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C. Chevalley,  "Theory of Lie groups" , '''1''' , Princeton Univ. Press  (1946)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.-P. Serre,  "Lie algebras and Lie groups" , Benjamin  (1965)  (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C. Chevalley,  "Theory of Lie groups" , '''1''' , Princeton Univ. Press  (1946)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The unique connected simply-connected Lie group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490120.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490121.png" /> that is locally isomorphic to a connected Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490122.png" /> is called the covering group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490123.png" />. Existence and uniqueness are due to L.S. Pontryagin (1966).
+
The unique connected simply-connected Lie group over $  \mathbf C $
 +
or $  \mathbf R $
 +
that is locally isomorphic to a connected Lie group $  G $
 +
is called the covering group of $  G $.  
 +
Existence and uniqueness are due to L.S. Pontryagin (1966).
  
So, the global structure of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490124.png" /> is as follows. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490125.png" /> consists of a discrete number of connected components. The component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490126.png" /> containing the identity is normal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490127.png" /> (and both open and closed). Thus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490128.png" /> is a discrete group. Often, particularly when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490129.png" /> is compact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490130.png" /> is a semi-direct product: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490131.png" />. Finally, there exists a simply-connected connected covering group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490132.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490133.png" /> with a projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490134.png" /> of which the kernel is discrete and contained in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490135.png" />.
+
So, the global structure of a Lie group $  G $
 +
is as follows. $  G $
 +
consists of a discrete number of connected components. The component $  G  ^ {0} $
 +
containing the identity is normal in $  G $(
 +
and both open and closed). Thus $  G / G  ^ {0} $
 +
is a discrete group. Often, particularly when $  G $
 +
is compact, $  G $
 +
is a semi-direct product: $  G \simeq G  ^ {0} \times _ {s} G / G  ^ {0} $.  
 +
Finally, there exists a simply-connected connected covering group $  \widetilde{G}  {}  ^ {0} $
 +
of $  G  ^ {0} $
 +
with a projection $  \widetilde{G}  {}  ^ {0} \rightarrow G  ^ {0} \rightarrow \{ 1 \} $
 +
of which the kernel is discrete and contained in the centre of $  \widetilde{G}  {}  ^ {0} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.S. Varadarajan,  "Lie groups, Lie algebras and their representations" , Prentice-Hall  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.S. Varadarajan,  "Lie groups, Lie algebras and their representations" , Prentice-Hall  (1974)</TD></TR></table>

Latest revision as of 22:16, 5 June 2020


Lie algebra of a Lie group $ G $ defined over a field $ k $ that is complete with respect to a non-trivial absolute value

The Lie algebra $ \mathfrak g $ of $ G $ regarded as local Lie group (cf. Lie group, local). Thus, as a vector space $ \mathfrak g $ is identified with the tangent space to $ G $ at the point $ e $. The multiplication operation $ [ , ] $ in the Lie algebra $ \mathfrak g $ can be defined in any of the following equivalent ways.

1) Let ad be the differential of the adjoint representation of the group $ G $( cf. Adjoint representation of a Lie group). Then $ \mathop{\rm ad} X $, for any vector $ X \in \mathfrak g $, is a linear transformation of the space $ \mathfrak g $ and $ \mathop{\rm ad} X ( Y) = [ X , Y ] $ for any $ Y \in \mathfrak g $.

2) Let $ k = \mathbf R $, let $ X , Y \in \mathfrak g $ be two tangent vectors to $ G $ at $ e $ and let $ x ( t) $ and $ y ( t) $ be smooth curves in $ G $ for which $ X $ and $ Y $ are tangent vectors for $ t = 0 $. Then $ [ X , Y ] $ is the tangent vector for $ s = 0 $ to the curve $ q ( t) = x ( s) y ( s) x ( s) ^ {-} 1 y ( s) ^ {-} 1 $, where $ s \geq 0 $ and $ s ^ {2} = t $.

3) Let $ U ( G) $ be the associative $ k $- algebra of generalized functions on $ G $ with support at $ e $ and with multiplication defined by the convolution $ \star $. The space $ \mathfrak g $ is identified with the set of primitive elements (cf. Hopf algebra) of the bi-algebra $ U ( G) $, and for any $ X , Y \in \mathfrak g $ the vector $ X \star Y - Y \star X $ also lies in $ \mathfrak g $. Then $ X \star Y - Y \star X = [ X , Y ] $.

4) Let $ {\mathcal L} $ be the vector space of all vector fields on $ G $ that are invariant with respect to left translation by elements of $ G $. The correspondence between the vector field and its value at the point $ e \in G $ is an isomorphism of the vector spaces $ {\mathcal L} $ and $ \mathfrak g $. On the other hand, to any vector field $ L \in {\mathcal L} $ corresponds a left-invariant derivation of the $ k $- algebra $ A $ of analytic functions on $ G $ by means of the formula $ L ( f ) ( g) = ( df ) _ {g} ( L _ {g} ) $ for any $ f \in A $, $ g \in G $, and this correspondence is an isomorphism of the space $ {\mathcal L} $ to the vector space $ D $ of all left-invariant derivations of $ A $. For any $ X \in \mathfrak g $, let $ L _ {X} \in {\mathcal L} $ denote the left-invariant vector field for which $ {( L _ {X} ) } _ {e} = X $. If $ X , Y \in \mathfrak g $, then the product $ [ X , Y ] $ can be defined as the vector of $ \mathfrak g $ for which the field $ L _ {[ X , Y ] } $ specifies the derivation $ L _ {X} \cdot L _ {Y} - L _ {Y} \cdot L _ {X} $ of the algebra $ A $.

Example. Let $ G $ be the analytic group of all non-singular matrices of order $ n $ with coefficients in $ k $. Then the tangent space $ \mathfrak g $ to $ G $ at the identity is identified with the space of all matrices of order $ n $ with coefficients in $ k $, and a Lie algebra structure on $ \mathfrak g $ is defined by the formula $ [ X , Y ] = XY - YX $.

The correspondence between an analytic group and its Lie algebra has important functorial properties and significantly reduces the study of analytic groups to the study of their Lie algebras. Namely, let $ G _ {1} $ and $ G _ {2} $ be analytic groups with Lie algebras $ \mathfrak g _ {1} $ and $ \mathfrak g _ {2} $ and let $ \phi : G _ {1} \rightarrow G _ {2} $ be an analytic homomorphism. Then $ d \phi _ {e} : \mathfrak g _ {1} \rightarrow \mathfrak g _ {2} $ is a homomorphism of Lie algebras. The Lie algebra of the analytic group $ G _ {1} \times G _ {2} $ is isomorphic to $ \mathfrak g _ {1} \oplus \mathfrak g _ {2} $. If $ \mathfrak g $ is the Lie algebra of an analytic group $ G $, $ H $ is a Lie subgroup of $ G $( see Lie group) and $ \mathfrak h $ is the Lie algebra of the analytic group $ H $, then $ \mathfrak h $ is a subalgebra of $ \mathfrak g $, while if $ H $ is normal, then $ \mathfrak h $ is an ideal of $ \mathfrak g $. Suppose that the characteristic of $ k $ is zero. The Lie algebra of an intersection of Lie subgroups coincides with the intersection of their Lie algebras. The Lie algebra of the kernel of a homomorphism $ \phi $ of analytic groups is the kernel of the homomorphism $ d \phi _ {e} $ of their Lie algebras. The Lie algebra of the quotient group $ G / H $, where $ H $ is an analytic normal subgroup of $ G $, is the quotient algebra of the Lie algebra of $ G $ with respect to the ideal corresponding to $ H $. If $ \mathfrak g $ is the Lie algebra of an analytic group $ G $ and $ \mathfrak h $ is a subalgebra of $ \mathfrak g $, then there is a unique connected Lie subgroup $ H \subset G $ with Lie algebra $ \mathfrak h $; $ H $ need not be closed in $ G $. The Lie algebra of an analytic group is solvable (nilpotent, semi-simple) if and only if the group itself is solvable (nilpotent, semi-simple).

This connection between the categories of analytic groups and Lie algebras is not, however, an equivalence of these categories, in contrast to the case of local Lie groups. Namely, non-isomorphic analytic groups can have isomorphic Lie algebras. Analytic groups with isomorphic Lie algebras are said to be locally isomorphic. In the case of a field $ k $ of characteristic zero, to each finite-dimensional Lie algebra over $ k $ corresponds a class of locally isomorphic analytic groups. Suppose that $ k = \mathbf R $ or $ \mathbf C $. Among all locally isomorphic analytic groups there is a connected simply-connected group, which is unique up to isomorphism; the category of analytic groups of this type is equivalent to the category of finite-dimensional Lie algebras over $ k $. In particular, every homomorphism of Lie algebras is induced by an analytic homomorphism of the corresponding connected simply-connected analytic groups. Any connected Lie group that is locally isomorphic to a given connected simply-connected Lie group $ G $ has the form $ G / D $, where $ D $ is a discrete normal subgroup lying in the centre of $ G $.

References

[1] N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)
[2] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)
[3] J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)
[4] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)
[5] C. Chevalley, "Theory of Lie groups" , 1 , Princeton Univ. Press (1946)

Comments

The unique connected simply-connected Lie group over $ \mathbf C $ or $ \mathbf R $ that is locally isomorphic to a connected Lie group $ G $ is called the covering group of $ G $. Existence and uniqueness are due to L.S. Pontryagin (1966).

So, the global structure of a Lie group $ G $ is as follows. $ G $ consists of a discrete number of connected components. The component $ G ^ {0} $ containing the identity is normal in $ G $( and both open and closed). Thus $ G / G ^ {0} $ is a discrete group. Often, particularly when $ G $ is compact, $ G $ is a semi-direct product: $ G \simeq G ^ {0} \times _ {s} G / G ^ {0} $. Finally, there exists a simply-connected connected covering group $ \widetilde{G} {} ^ {0} $ of $ G ^ {0} $ with a projection $ \widetilde{G} {} ^ {0} \rightarrow G ^ {0} \rightarrow \{ 1 \} $ of which the kernel is discrete and contained in the centre of $ \widetilde{G} {} ^ {0} $.

References

[a1] V.S. Varadarajan, "Lie groups, Lie algebras and their representations" , Prentice-Hall (1974)
How to Cite This Entry:
Lie algebra of an analytic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_algebra_of_an_analytic_group&oldid=13500
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article