Namespaces
Variants
Actions

Lie algebra, algebraic

From Encyclopedia of Mathematics
Revision as of 14:50, 24 March 2012 by Ulf Rehmann (talk | contribs) (MR/ZBL numbers added)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Lie algebra of an algebraic subgroup (see Algebraic group) of the general linear group of all automorphisms of a finite-dimensional vector space $V$ over a field $k$. If $\mathfrak g$ is an arbitrary subalgebra of the Lie algebra of all endomorphisms of $V$, there is a smallest algebraic Lie algebra containing $\mathfrak g$; it is called the algebraic envelope (or hull) of the Lie subalgebra $\mathfrak g$. For a Lie algebra $\mathfrak g$ over an arbitrary algebraically closed field $k$ to be algebraic it is necessary that together with every linear operator $u\in{\mathfrak g}$ its semi-simple and nilpotent components $s$ and $n$ should lie in ${\mathfrak g}$ (see Jordan decomposition). This condition determines the so-called almost-algebraic Lie algebras. However, it is not sufficient in order that ${\mathfrak g}$ be an algebraic Lie algebra. In the case of a field $k$ of characteristic 0, a necessary and sufficient condition for a Lie algebra ${\mathfrak g}$ to be algebraic is that, together with $n$ and $s={\rm diag}(s_1,\dots,s_m)$, all operators of the form $\Phi(s) = {\rm diag}(\Phi(s_1),\dots,\Phi(s_m))$ should lie in ${\mathfrak g}$, where $\Phi$ is an arbitrary $\mathbb Q$-linear mapping from $k$ into $k$. The structure of an algebraic algebra has been investigated

in the case of a field of characteristic $p>0$.

A Lie algebra $L$ over a commutative ring $k$ in which for any element $x\in L$ the adjoint transformation ${\rm ad}\; x:y\to [x,y]$ defined on $L$ is the root of some polynomial with leading coefficient 1 and remaining coefficients from $k$. A finite-dimensional Lie algebra over a field $k$ is an algebraic Lie algebra. The converse is false: Over any field $k$ there are infinite-dimensional algebraic Lie algebras with finitely many generators [4]. A number of questions about algebraic Lie algebras have been solved in the class of nil Lie algebras (cf. Lie algebra, nil).

References

[1] A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[2]

C. Chevalley, "Théorie des groupes de Lie" , 2 , Hermann

(1951) MR0051242 Zbl 0054.01303
[3]

G.B. Seligman, "Modular Lie algebras" , Springer

(1967) MR0245627 Zbl 0189.03201
[4]

E.S. Golod, "On nil algebras and residually finite groups" Izv. Akad. Nauk SSSR Ser. Mat. , 28 : 2 (1964) pp. 273–276

(In Russian)


Comments

References

[a1] G.P. Hochschild, "Basic theory of algebraic groups and Lie algebras" , Springer (1981) MR0620024 Zbl 0589.20025
How to Cite This Entry:
Lie algebra, algebraic. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_algebra,_algebraic&oldid=21883
This article was adapted from an original article by Yu.A. Bakhturin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article