Namespaces
Variants
Actions

Levi-Civita connection

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An affine connection on a Riemannian space $ M $ that is a Riemannian connection (that is, a connection with respect to which the metric tensor is covariantly constant) and has zero torsion. An affine connection on $ M $ is determined uniquely by these conditions, hence every Riemannian space $ M $ has a unique Levi-Civita connection. This concept first arose in 1917 with T. Levi-Civita [1] as the concept of parallel displacement of a vector in Riemannian geometry. The idea itself goes back to F. Minding, who in 1837 introduced the concept of the involute of a curve on a surface.

With respect to a local coordinate system in $ M $, where $ d s ^ {2} = g _ {ij} d x ^ {i} d x ^ {j} $, the Levi-Civita connection on $ M $ is defined by the forms $ \omega _ {j} ^ {i} = \{ _ {jk} ^ { i } \} d x ^ {k} $, where

$$ \left \{ \begin{array}{c} i \\ jk \end{array} \right \} = \frac{1}{2} g ^ {il} \left ( \frac{\partial g _ {lj} }{\partial x ^ {k} } + \frac{\partial g _ {lk} }{\partial x ^ {j} } - \frac{\partial g _ {jk} }{\partial x ^ {l} } \right ) ; $$

its curvature tensor $ R _ {jkl} ^ {i} $ is defined by the formula

$$ d \omega _ {j} ^ {i} + \omega _ {k} ^ {i} \wedge \omega _ {j} ^ {k} = \frac{1}{2} R _ {jkl} ^ {i} d x ^ {k} \wedge d x ^ {l} . $$

Let $ R _ {ij,kl} = g _ {im} R _ {jkl} ^ {m} $; then

$$ R _ {ij,kl} = \frac{1}{2} \left \{ \frac{\partial ^ {2} g _ {jk} }{\partial x ^ {i} \partial x ^ {l} } - \frac{\partial ^ {2} g _ {jl} }{\partial x ^ {i} \partial x ^ {k} } - \frac{\partial ^ {2} g _ {ik} }{\partial x ^ {j} \partial x ^ {l} } + \frac{\partial ^ {2} g _ {il} }{\partial x ^ {j} \partial x ^ {k} } \right \} + $$

$$ + g _ {pq} \left ( \left \{ \begin{array}{c} p \\ il \end{array} \right \} \left \{ \begin{array}{c} q \\ jk \end{array} \right \} - \left \{ \begin{array}{c} p \\ ik \end{array} \right \} \left \{ \begin{array}{c} q \\ jl \end{array} \right \} \right ) ; $$

thus:

$$ R _ {ij,kl} = - R _ {ij,lk} ,\ \ R _ {ij,kl} = R _ {kl,ij} , $$

$$ R _ {ij,kl} + R _ {ik,lj} + R _ {il,jk} = 0 . $$

The curvature tensor of the Levi-Civita connection has $ n ^ {2} ( n ^ {2} - 1 ) / 12 $ essential components, where $ n = \mathop{\rm dim} M $. For example, for $ n = 2 $ there is only one essential component: $ R _ {12,12} = K \mathop{\rm det} | g _ {ij} | $, where $ K $ is the Gaussian curvature.

If a Riemannian space $ M $ is isometrically immersed in a Euclidean space $ E ^ {N} $, then its Levi-Civita connection is characterized as follows: For two arbitrary vector fields $ X $, $ Y $ on $ M \subset E ^ {N} $ the covariant derivative $ ( \nabla _ {Y} X ) _ {x} $ at a point $ x \in M $ is the orthogonal projection on the tangent plane $ T _ {x} ( M) \subset E ^ {N} $ of the ordinary differential $ ( d _ {Y} X ) _ {x} $ of the field $ X $ in $ E ^ {N} $ with respect to the vector $ Y _ {x} \in T _ {x} ( M) $. In other words, the mapping of a neighbouring infinitely close tangent plane onto the original tangent plane is accomplished by orthogonal projection.

References

[1] T. Levi-Civita, "Nozione di parallelismo in una varietá qualunque e consequente specificazione geometrica della curvatura riemanniana" Rend. Circ. Math. Palermo , 42 (1917) pp. 173–205
[2] D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)
[3] P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)

Comments

References

[a1] W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)
How to Cite This Entry:
Levi-Civita connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Levi-Civita_connection&oldid=47618
This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article