Namespaces
Variants
Actions

Lebesgue constants

From Encyclopedia of Mathematics
Revision as of 17:00, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The quantities

where

is the Dirichlet kernel. The Lebesgue constants for each equal:

1) the maximum value of for all and all continuous functions such that for almost-all ;

2) the least upper bound of for all and all continuous functions such that ;

3) the least upper bound of the integrals

for all functions such that

Here is the -th partial sum of the trigonometric Fourier series of the -periodic function . The following asymptotic formula is valid:

In particular, as ; this is connected with the divergence of the trigonometric Fourier series of certain continuous functions. In a wider sense the Lebesgue constants are defined for other orthonormal systems (cf. Orthogonal system) as the quantities

where is the Dirichlet kernel for the given orthonormal system of functions on ; they play an important role in questions of convergence of Fourier series in these systems. The Lebesgue constants were introduced by H. Lebesgue (1909). See also Lebesgue function.

References

[1] A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988)


Comments

References

[a1] E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapts. 4&6
[a2] T.J. Rivlin, "An introduction to the approximation of functions" , Blaisdell (1969) pp. Sect. 4.2

The Lebesgue constants of an interpolation process are the numbers

where

and are pairwise distinct interpolation points lying in some interval .

Let and be, respectively, the space of continuous functions on and the space of algebraic polynomials of degree at most , considered on the same interval, with the uniform metric, and let be the interpolation polynomial of degree that takes the same values at the points , , as . If denotes the operator that associates with , i.e. , then , where the left-hand side is the operator norm in the space of bounded linear operators and

where is the best approximation of by algebraic polynomials of degree at most .

For any choice of the interpolation points in , one has . For equidistant points a constant exists such that . In case of the interval , for points coinciding with the zeros of the -th Chebyshev polynomial, the Lebesgue constants have minimum order of growth, namely

If is times differentiable on , is a given set of numbers ( "approximations of the values fxk" ), is the interpolation polynomial of degree that takes the values at the points , , and

then

The Lebesgue constants of an arbitrary interval are connected with the analogous constants for the interval by the relation

in particular, .

L.D. Kudryavtsev

Comments

The problem to determine "optimal nodes" , i.e., for a fixed positive integer , to determine such that is minimal, has been given much attention. S.N. Bernstein [S.N. Bernshtein] (1931) conjectured that is minimal when "equi-oscillates" . Bernstein's conjecture was proved by T.A. Kilgore (cf. [a1]); historical notes are also included there.

References

[a1] T.A. Kilgore, "A characterization of the Lagrange interpolation projection with minimal Tchebycheff norm" J. Approx. Theory , 24 (1978) pp. 273–288
[a2] T.J. Rivlin, "An introduction to the approximation of functions" , Blaisdell (1969) pp. Sect. 4.2
How to Cite This Entry:
Lebesgue constants. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_constants&oldid=12712
This article was adapted from an original article by K.I. Oskolkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article