Namespaces
Variants
Actions

Difference between revisions of "Lattice of points"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
''point lattice, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576602.png" />, with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576603.png" />''
+
<!--
 +
l0576602.png
 +
$#A+1 = 14 n = 0
 +
$#C+1 = 14 : ~/encyclopedia/old_files/data/L057/L.0507660 Lattice of points,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576604.png" /> of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576605.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576606.png" /> are integers.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576607.png" /> can be regarded as the free [[Abelian group|Abelian group]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576608.png" /> generators. A lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l0576609.png" /> has an infinite number of bases; their general form is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l05766010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l05766011.png" /> runs through all integral matrices of determinant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l05766012.png" />. The quantity
+
''point lattice, in  $  \mathbf R  ^ {n} $,
 +
with basis  $  [ \mathbf e _ {1} \dots \mathbf e _ {n} ] $''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l05766013.png" /></td> </tr></table>
+
The set  $  \Lambda = \mathbf Z {\mathbf e _ {1} } + \dots + \mathbf Z {\mathbf e _ {n} } $
 +
of points  $  \mathbf a = g _ {1} \mathbf e _ {1} + \dots + g _ {n} \mathbf e _ {n} $,
 +
where  $  g _ {1} \dots g _ {n} $
 +
are integers.
  
is the volume of the parallelopipedon formed by the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l05766014.png" />. It does not depend on the choice of a basis and is called the determinant of the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057660/l05766015.png" />.
+
The lattice  $  \Lambda $
 +
can be regarded as the free [[Abelian group|Abelian group]] with  $  n $
 +
generators. A lattice  $  \Lambda $
 +
has an infinite number of bases; their general form is $  ( \mathbf e _ {1} \dots \mathbf e _ {n} ) U $,
 +
where  $  U $
 +
runs through all integral matrices of determinant $  \pm  1 $.  
 +
The quantity
  
The partition of point lattices into [[Voronoi lattice types|Voronoi lattice types]] plays an important role in the geometry of quadratic forms (cf. [[Quadratic form|Quadratic form]]).
+
$$
 +
d ( \Lambda )  =  | \mathop{\rm det} ( \mathbf e _ {1} \dots e _ {n} ) | >  0
 +
$$
  
 +
is the volume of the parallelopipedon formed by the vectors  $  \mathbf e _ {1} \dots \mathbf e _ {n} $.
 +
It does not depend on the choice of a basis and is called the determinant of the lattice  $  \Lambda $.
  
 +
The partition of point lattices into [[Voronoi lattice types|Voronoi lattice types]] plays an important role in the geometry of quadratic forms (cf. [[Quadratic form|Quadratic form]]).
  
 
====Comments====
 
====Comments====
Line 17: Line 40:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W.S. Cassels,   "An introduction to the geometry of numbers" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Erdös,   P.M. Gruber,   J. Hammer,   "Lattice points" , Longman (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.M. Gruber,   C.G. Lekkerkerker,   "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P.M. Gruber (ed.) J.M. Wills (ed.) , ''Handbook of convex geometry'' , North-Holland (1992)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Kannan,   L. Lovasz,   "Covering minima and lattice-point-free convex bodies" ''Ann. of Math.'' , '''128''' (1988) pp. 577–602</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to the geometry of numbers" , Springer (1972) {{MR|1434478}} {{MR|0306130}} {{MR|0181613}} {{MR|0157947}} {{ZBL|0866.11041}} {{ZBL|0209.34401}} {{ZBL|0131.29003}} {{ZBL|0086.26203}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Erdös, P.M. Gruber, J. Hammer, "Lattice points" , Longman (1989) {{MR|1003606}} {{ZBL|0683.10025}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint) {{MR|0893813}} {{ZBL|0611.10017}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P.M. Gruber (ed.) J.M. Wills (ed.) , ''Handbook of convex geometry'' , North-Holland (1992) {{MR|1242973}} {{ZBL|0777.52002}} {{ZBL|0777.52001}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Kannan, L. Lovasz, "Covering minima and lattice-point-free convex bodies" ''Ann. of Math.'' , '''128''' (1988) pp. 577–602 {{MR|0970611}} {{ZBL|0659.52004}} </TD></TR></table>

Latest revision as of 22:15, 5 June 2020


point lattice, in $ \mathbf R ^ {n} $, with basis $ [ \mathbf e _ {1} \dots \mathbf e _ {n} ] $

The set $ \Lambda = \mathbf Z {\mathbf e _ {1} } + \dots + \mathbf Z {\mathbf e _ {n} } $ of points $ \mathbf a = g _ {1} \mathbf e _ {1} + \dots + g _ {n} \mathbf e _ {n} $, where $ g _ {1} \dots g _ {n} $ are integers.

The lattice $ \Lambda $ can be regarded as the free Abelian group with $ n $ generators. A lattice $ \Lambda $ has an infinite number of bases; their general form is $ ( \mathbf e _ {1} \dots \mathbf e _ {n} ) U $, where $ U $ runs through all integral matrices of determinant $ \pm 1 $. The quantity

$$ d ( \Lambda ) = | \mathop{\rm det} ( \mathbf e _ {1} \dots e _ {n} ) | > 0 $$

is the volume of the parallelopipedon formed by the vectors $ \mathbf e _ {1} \dots \mathbf e _ {n} $. It does not depend on the choice of a basis and is called the determinant of the lattice $ \Lambda $.

The partition of point lattices into Voronoi lattice types plays an important role in the geometry of quadratic forms (cf. Quadratic form).

Comments

The idea of lattices and lattice points links geometry to arithmetic (integers). Therefore it plays a central role in the geometry of numbers; integer programming (lattice point theorems); Diophantine approximations; reduction theory; analytic number theory; numerical analysis; crystallography (cf. Crystallography, mathematical); coding and decoding; combinatorics; geometric algorithms, and other areas.

References

[a1] J.W.S. Cassels, "An introduction to the geometry of numbers" , Springer (1972) MR1434478 MR0306130 MR0181613 MR0157947 Zbl 0866.11041 Zbl 0209.34401 Zbl 0131.29003 Zbl 0086.26203
[a2] P. Erdös, P.M. Gruber, J. Hammer, "Lattice points" , Longman (1989) MR1003606 Zbl 0683.10025
[a3] P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint) MR0893813 Zbl 0611.10017
[a4] P.M. Gruber (ed.) J.M. Wills (ed.) , Handbook of convex geometry , North-Holland (1992) MR1242973 Zbl 0777.52002 Zbl 0777.52001
[a5] R. Kannan, L. Lovasz, "Covering minima and lattice-point-free convex bodies" Ann. of Math. , 128 (1988) pp. 577–602 MR0970611 Zbl 0659.52004
How to Cite This Entry:
Lattice of points. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lattice_of_points&oldid=17812
This article was adapted from an original article by A.V. Malyshev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article