Namespaces
Variants
Actions

Lamé constants

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Quantities that connect the components of an elastic stress at some point of a linearly-elastic (or solid deformable) isotropic body with the components of the deformation at this point: $$ \sigma_x = 2 \mu \epsilon_{xx} + \lambda(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz}) \ , $$ $$ \tau_{xy} = \mu \epsilon_{xy} \ , $$ where $\sigma$ and $\tau$ are the normal and tangential constituents of the stress, $\epsilon$ are the components of the deformation and the coefficients $\lambda$ and $\mu$ are the Lamé constants. The Lamé constants depend on the material and its temperature. The Lamé constants are connected with the elasticity modulus $E$ and the Poisson ratio $\nu$ by $$ \mu = G = \frac{E}{2(1+\nu)} \ , $$ $$ \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \ ; $$ $E$ is also called Young's modulus and $G$ is the modulus of shear.

The Lamé constants are named after G. Lamé.


Comments

References

[a1] E.M. Lifshitz, "Theory of elasticity" , Pergamon (1959) (Translated from Russian)
[a2] I.S. [I.S. Sokolnikov] Sokolnikoff, "Mathematical theory of elasticity" , McGraw-Hill (1956) (Translated from Russian)
[a3] S.C. Hunter, "Mechanics of continuous media" , Wiley (1976)
How to Cite This Entry:
Lamé constants. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lam%C3%A9_constants&oldid=42630
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article