Namespaces
Variants
Actions

Lagrange problem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


One of the fundamental problems in the classical calculus of variations. It consists in minimizing the functional

$$ J ( y) = \int\limits _ { x _ {1} } ^ { {x _ 2 } } f ( x , y , y ^ \prime ) d x ,\ \ f : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R , $$

in the presence of differential constraints of equality type:

$$ \tag{1 } \phi ( x , y , y ^ \prime ) = 0 ,\ \ \phi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \ \mathbf R ^ {m} ,\ m < n , $$

and boundary conditions

$$ \psi ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) ) = 0 ,\ \ \psi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R \times \mathbf R ^ {n} \rightarrow \mathbf R ^ {p} , $$

$$ p \leq 2 n + 2 . $$

The Lagrange problem is usually considered under the condition that the system (1) is regular, that is, the matrix $ \| \partial \phi / \partial y ^ \prime \| $ has maximal rank:

$$ \mathop{\rm rank} \left \| \frac{\partial \phi }{\partial y ^ \prime } \right \| = m . $$

Under this condition the system (1) can be solved for part of the variables and, using a different notation ( $ t , x $ instead of $ x , y $), the Lagrange problem can be reduced to the form

$$ \tag{2 } \left . \begin{array}{c} \int\limits _ { t _ {0} } ^ { {t _ 1 } } F ( t , x , u ) \ dt ,\ F : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {r} \rightarrow \mathbf R , \\ \dot{x} = \Phi ( t , x , u ) ,\ \Phi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {r} \rightarrow \mathbf R ^ {n} . \\ \end{array} \right \} $$

The function $ F $ and the mapping $ \Phi $ are usually assumed to be continuously differentiable. Problems of optimal control are often specified in the form (2) (the Pontryagin form), and restrictions are, moreover, imposed on the control $ u \in U $. Necessary conditions for a strong extremum for the problem (2) (for simplicity, with fixed left-hand end $ x _ {0} $ and free right-hand end $ x _ {1} $) have the following form. Let

$$ L ( t , x , \dot{x} , u , p ( t) ) = \ ( p ( t) \mid - \dot{x} + \Phi ( t , x , u )) - F ( t , x , u ) $$

be the Lagrange function. For a vector function $ ( x ^ {*} ( t) , u ^ {*} ( t) ) $ to be a strong minimum in the Lagrange problem (2) it is necessary that the following relations hold:

$$ \tag{3 } \left . \frac{\partial L }{\partial \dot{x} } \right | _ {( x ^ {*} , u ^ {*} ) } + \int\limits _ { t _ {0} } ^ { {t _ 1 } } \left . \frac{\partial L }{d x } \right | _ {( x ^ {*} , u ^ {*} ) } d t = 0 , $$

$$ \tag{4 } p ( t _ {1} ) = 0 , $$

$$ \tag{5 } {\mathcal E} \equiv L ( t , x ^ {*} ( t) , \dot{x} , u , p ( t) ) + $$

$$ - L ( t , x ^ {*} ( t) , \dot{x} ^ {*} ( t) , u ^ {*} ( t) , p ( t) ) + $$

$$ - ( ( \dot{x} - \dot{x} ^ {*} ( t) ) \mid L _ {\dot{x} } ( t , x ^ {*} ( t ) , \dot{x} ^ {*} ( t ) , u ^ {*} ( t ) , p ( t )) ) = $$

$$ = \ ( p ( t) \mid \Phi ( t , x ^ {*} ( t) , u ) - F ( t , x ^ {*} ( t) , u )) + $$

$$ - ( p ( t) \mid \Phi ( t , x ^ {*} ( t) , u ^ {*} ( t) ) + F ( t , x ^ {*} ( t) , u ^ {*} ( t) )) \leq 0 $$

for all possible admissible values of $ \dot{x} $ and $ u $.

If one carries out differentiation in (3) with respect to $ t $ and uses the notation

$$ {\mathcal H} ( t , x , u , p ) = ( p \mid \Phi ) - F , $$

then a necessary condition for a strong minimum can be stated in the form of a maximum principle, in which the Euler equation (3), the transversality condition (4) and the Weierstrass condition (5) are combined. For a vector function $ ( x ^ {*} , u ^ {*} ) $ to be a strong minimum in the problem (2) with fixed left-hand end and free right-hand end it is necessary that there is a solution of the system

$$ \dot{p} ( t) = - \frac{\partial {\mathcal H} ( t , x ^ {*} , u ^ {*} , p ) }{\partial x } ,\ p ( t _ {1} ) = 0 , $$

for which

$$ {\mathcal H} ( t , x ^ {*} ( t) , u ^ {*} ( t) , p ( t)) = \max _ {u \in U } {\mathcal H} ( t , x ^ {*} ( t) , u , p ( t) ) . $$

J.L. Lagrange considered similar problems in connection with studies in mechanics (in the second half of the 18th century).

For references see Variational calculus.

Comments

The notation $ ( a \mid b) $ denotes the inner product of the vectors $ a $ and $ b $.

How to Cite This Entry:
Lagrange problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_problem&oldid=47559
This article was adapted from an original article by I.B. VapnyarskiiV.M. Tikhomirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article