Namespaces
Variants
Actions

Kolmogorov-Smirnov test

From Encyclopedia of Mathematics
Revision as of 22:14, 5 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 62G10 [MSN][ZBL]

A non-parametric test used for testing a hypothesis $ H _ {0} $, according to which independent random variables $ X _ {1} \dots X _ {n} $ have a given continuous distribution function $ F $, against the one-sided alternative $ H _ {1} ^ {+} $: $ \sup _ {| x|<\infty } ( {\mathsf E} F _ {n} ( x) - F ( x) ) > 0 $, where $ {\mathsf E} F _ {n} $ is the mathematical expectation of the empirical distribution function $ F _ {n} $. The Kolmogorov–Smirnov test is constructed from the statistic

$$ D _ {n} ^ {+} = \ \sup _ {| x | < \infty } \ ( F _ {n} ( x) - F ( x) ) = \ \max _ {1 \leq m \leq n } \ \left ( \frac{m}{n} - F ( X _ {(} m) ) \right ) , $$

where $ X _ {(} 1) \leq \dots \leq X _ {(} n) $ is the variational series (or set of order statistics) obtained from the sample $ X _ {1} \dots X _ {n} $. Thus, the Kolmogorov–Smirnov test is a variant of the Kolmogorov test for testing the hypothesis $ H _ {0} $ against a one-sided alternative $ H _ {1} ^ {+} $. By studying the distribution of the statistic $ D _ {n} ^ {+} $, N.V. Smirnov [1] showed that

$$ \tag{1 } {\mathsf P} \{ D _ {n} ^ {+} \geq \lambda \} = $$

$$ = \ \sum _ { k= } 0 ^ { {[ } n ( 1 - \lambda ) ] } \lambda \left ( \begin{array}{c} n \\ k \end{array} \right ) \left ( \lambda + \frac{k}{n} \right ) ^ {k-} 1 \left ( 1 - \lambda - \frac{k}{n} \right ) ^ {n-} k , $$

where $ 0 < \lambda < 1 $ and $ [ a ] $ is the integer part of the number $ a $. Smirnov obtained in addition to the exact distribution (1) of $ D _ {n} $ its limit distribution, namely: If $ n \rightarrow \infty $ and $ 0 < \lambda _ {0} < \lambda = O ( n ^ {1/6} ) $, then

$$ {\mathsf P} \{ D _ {n} ^ {+} \geq \lambda \} = \ e ^ {- 2 \lambda ^ {2} } \left [ 1 + O \left ( \frac{1}{\sqrt n} \right ) \right ] , $$

where $ \lambda _ {0} $ is any positive number. By means of the technique of asymptotic Pearson transformation it has been proved [2] that if $ n \rightarrow \infty $ and $ 0 < \lambda _ {0} < \lambda = O ( n ^ {1/3} ) $, then

$$ \tag{2 } {\mathsf P} \left \{ \frac{1}{18n} ( 6 n D _ {n} ^ {+} + 1 ) ^ {2} \geq \lambda \right \} = e ^ {- \lambda } \left [ 1 + O \left ( \frac{1}{n} \right ) \right ] . $$

According to the Kolmogorov–Smirnov test, the hypothesis $ H _ {0} $ must be rejected with significance level $ \alpha $ whenever

$$ \mathop{\rm exp} \ \left [ \frac{( - 6 n D _ {n} ^ {+} + 1 ) ^ {2} }{18n} \right ] \leq \alpha , $$

where, by virtue of (2),

$$ {\mathsf P} \left \{ \mathop{\rm exp} \ \left [ \frac{( - 6 n D _ {n} ^ {+} + 1 ) ^ {2} }{18n} \right ] \leq \alpha \right \} = \alpha \left ( 1 + O \left ( \frac{1}{n} \right ) \ \right ) . $$

The testing of $ H _ {0} $ against the alternative $ H _ {1} ^ {-} $: $ \inf _ {| x | < \infty } ( {\mathsf E} F _ {n} ( x) - F ( x) ) < 0 $ is dealt with similarly. In this case the statistic of the Kolmogorov–Smirnov test is the random variable

$$ D _ {n} ^ {-} = - \inf _ {| x | < \infty } \ ( F _ {n} ( x) - F ( x) ) = \ \max _ {1 \leq m \leq n } \ \left ( F ( X _ {(} m) ) - m- \frac{1}{n} \right ) , $$

whose distribution is the same as that of the statistic $ D _ {n} ^ {+} $ when $ H _ {0} $ is true.

References

[1] N.V. Smirnov, "Approximate distribution laws for random variables, constructed from empirical data" Uspekhi Mat. Nauk , 10 (1944) pp. 179–206 (In Russian)
[2] L.N. Bol'shev, "Asymptotically Pearson transformations" Theor. Probab. Appl. , 8 (1963) pp. 121–146 Teor. Veroyatnost. i Primenen. , 8 : 2 (1963) pp. 129–155
[3] L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)
[4] B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)

Comments

There is also a two-sample Kolmogorov–Smirnov test, cf. the editorial comments to Kolmogorov test and, for details, [a1], [a2].

References

[a1] G.E. Noether, "A brief survey of nonparametric statistics" R.V. Hogg (ed.) , Studies in statistics , Math. Assoc. Amer. (1978) pp. 39–65
[a2] M. Hollander, D.A. Wolfe, "Nonparametric statistical methods" , Wiley (1973)
How to Cite This Entry:
Kolmogorov-Smirnov test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kolmogorov-Smirnov_test&oldid=47513
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article