Namespaces
Variants
Actions

Kerr metric

From Encyclopedia of Mathematics
Revision as of 22:14, 5 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The solution of the Einstein equation describing the external gravity field of a rotating source with mass $ m $ and angular momentum $ L $. It is of type $ D $ according to the classification of A.Z. Petrov. The simplest description is as the Kerr–Schild metric:

$$ g _ {\mu \nu } = \eta _ {\mu \nu } + 2 h K _ \mu K _ \nu , $$

where $ K _ \mu $ is the null vector $ ( K _ \mu K _ \nu g ^ {\mu \nu } = 0 ) $, tangent to the special principal null congruence with rotation (of non-gradient type), and $ \eta _ {\mu \nu } $ is the metric tensor of Minkowski space. The characteristic parameter of the Kerr metric is $ a = L / m $. In the general case in the presence of a charge $ e $( a Kerr–Newman metric) the scalar function $ h $ has the form

$$ h = \frac{m}{2} ( \rho ^ {-} 1 + \overline{ {\rho ^ {-} 1 }}\; ) - \frac{e ^ {2} }{2 \rho \overline \rho \; } , $$

where

$$ \rho ^ {2} = x ^ {2} + y ^ {2} + ( z + i a ) ^ {2} . $$

The field is singular on the annular thread of radius $ a $( when $ \rho = 0 $). For $ a = 0 $ the singularity contracts to a point; when $ a = e = 0 $ the Kerr metric becomes the Schwarzschild metric.

The Kerr metric was obtained by R.P. Kerr [1].

References

[1] R.P. Kerr, "Gravitational field of a spinning mass as an example of algebraically special matrices" Phys. Rev. Letters , 11 (1963) pp. 237–238
[2] C.W. Misner, K.S. Thorne, J.A. Wheeler, "Gravitation" , Freeman (1973)
[3] M. Rees, R. Ruffini, J. Wheeler, "Black holes, gravitational waves and cosmology" , Gordon & Breach (1974)
How to Cite This Entry:
Kerr metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kerr_metric&oldid=47493
This article was adapted from an original article by A.Ya. Burinskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article