Namespaces
Variants
Actions

Difference between revisions of "Kergin interpolation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 87 formulas out of 87 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
A form of [[Interpolation|interpolation]] providing a canonical [[Polynomial|polynomial]] of total degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200801.png" /> which interpolates a sufficiently differentiable function at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200802.png" /> points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200803.png" />. (For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200804.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200805.png" /> there is no unique interpolating polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200806.png" />.)
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
More specifically, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200807.png" /> not necessarily distinct points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200808.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200809.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008010.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008011.png" />-times continuously differentiable function on the convex hull of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008012.png" />, the Kergin interpolating polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008013.png" /> is of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008014.png" /> and satisfies:
+
Out of 87 formulas, 87 were replaced by TEX code.-->
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008015.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008016.png" />; if a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008017.png" /> is repeated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008018.png" /> times, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008020.png" /> have the same [[Taylor series|Taylor series]] up to order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008021.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008022.png" />;
+
{{TEX|semi-auto}}{{TEX|done}}
 +
A form of [[Interpolation|interpolation]] providing a canonical [[Polynomial|polynomial]] of total degree $\leq m$ which interpolates a sufficiently differentiable function at $m + 1$ points in ${\bf R} ^ { n }$. (For $n &gt; 1$ and $m &gt; 1$ there is no unique interpolating polynomial of degree $\leq m$.)
  
2) for any constant-coefficient partial differential operator (cf. also [[Differential equation, partial|Differential equation, partial]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008023.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008024.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008025.png" /> is zero at some point of the convex hull of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008026.png" /> of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008027.png" />; furthermore, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008028.png" /> satisfies an equation of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008030.png" />;
+
More specifically, given $m + 1$ not necessarily distinct points in ${\bf R} ^ { n }$, $p = \{ p _ { 0 } , \dots , p _ { m } \}$, and $f$ an $m$-times continuously differentiable function on the convex hull of $p$, the Kergin interpolating polynomial $K _ { p } ( f )$ is of degree $\leq m$ and satisfies:
  
3) for any affine mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008031.png" /> (cf. also [[Affine morphism|Affine morphism]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008032.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008033.png" />-times continuously differentiable function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008034.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008035.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008036.png" />;
+
1) $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ for $i = 0 , \dots , m$; if a point $p_j$ is repeated $s \geq 2$ times, then $K _ { p } ( f )$ and $f$ have the same [[Taylor series|Taylor series]] up to order $s - 1$ at $p_j$;
  
4) the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008037.png" /> is linear and continuous.
+
2) for any constant-coefficient partial differential operator (cf. also [[Differential equation, partial|Differential equation, partial]]) $Q ( \partial / \partial x )$ of degree $k \leq m$, one has $Q ( \partial / \partial x ) ( K _ { p } ( f ) - ( f ) )$ is zero at some point of the convex hull of any $k + 1$ of the points $\{ p _ { 0 } , \dots , p _ { m } \}$; furthermore, if $f$ satisfies an equation of the form $Q ( \partial / \partial x ) ( f ) \equiv 0$, then $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$;
 +
 
 +
3) for any affine mapping $\lambda : \mathbf R ^ { n } \rightarrow \mathbf R ^ { q }$ (cf. also [[Affine morphism|Affine morphism]]) and $g$ an $m$-times continuously differentiable function on ${\bf R} ^ { q }$ one has $K _ { p } ( g \circ \lambda ) = K _ { \lambda ( p ) } ( g ) \circ \lambda$, where $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$;
 +
 
 +
4) the mapping $f \rightarrow K _ { p } ( f )$ is linear and continuous.
  
 
(In fact, 3)–4) already characterize the Kergin interpolating polynomial.)
 
(In fact, 3)–4) already characterize the Kergin interpolating polynomial.)
  
The existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008038.png" /> was established by P. Kergin in 1980 [[#References|[a2]]]. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008040.png" /> reduces to Lagrange–Hermite interpolation (cf. also [[Hermite interpolation formula|Hermite interpolation formula]]; [[Lagrange interpolation formula|Lagrange interpolation formula]]).
+
The existence of $K _ { p }$ was established by P. Kergin in 1980 [[#References|[a2]]]. For $n = 1$, $K _ { p }$ reduces to Lagrange–Hermite interpolation (cf. also [[Hermite interpolation formula|Hermite interpolation formula]]; [[Lagrange interpolation formula|Lagrange interpolation formula]]).
  
An explicit formula for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008041.png" /> was given by P. Milman and C. Micchelli [[#References|[a3]]]. The formula shows that the coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008042.png" /> are given by integrating derivatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008043.png" /> over faces in the convex hull of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008044.png" />. More specifically, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008045.png" /> denote the simplex
+
An explicit formula for $K _ { p } ( f )$ was given by P. Milman and C. Micchelli [[#References|[a3]]]. The formula shows that the coefficients of $K _ { p } ( f )$ are given by integrating derivatives of $f$ over faces in the convex hull of $p$. More specifically, let $S_r$ denote the simplex
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008046.png" /></td> </tr></table>
+
\begin{equation*} S _ { r } = \left\{ ( v _ { 0 } , \dots , v _ { r } ) \in \mathbf{R} ^ { r + 1 } : v _ { j } \geq 0 , \sum _ { j = 0 } ^ { r } v _ { j } = 1 \right\} \end{equation*}
  
 
and use the notation
 
and use the notation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008047.png" /></td> </tr></table>
+
\begin{equation*} \int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }. \end{equation*}
  
 
Then
 
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008048.png" /></td> </tr></table>
+
\begin{equation*} K _ { p } (\, f ) = \sum _ { r = 0 } ^ { m } \int _ { [ p _ { 0 } \ldots p _ { r } ] } D _ { x - p _ { 0 }} \cdots D _ { x  - p _ { r - 1 }  }\,f, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008049.png" /> denotes the directional derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008050.png" /> in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008051.png" />.
+
where $D _ { y } ( f )$ denotes the directional derivative of $f$ in the direction $y \in \mathbf{R} ^ { x }$.
  
Kergin interpolation also carries over to the complex case (as does Lagrange–Hermite interpolation), as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008052.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008054.png" />-convex domain (i.e. every intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008055.png" /> with a complex affine line is connected and simply connected, cf. also [[C-convexity|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008056.png" />-convexity]]) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008057.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008058.png" /> points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008059.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008060.png" /> holomorphic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008061.png" /> there is a canonical analytic interpolating polynomial, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008062.png" />, of total degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008063.png" /> that satisfies properties corresponding to 1), 3), 4) above. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008064.png" /> is convex (identifying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008065.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008066.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008067.png" />. For general <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008068.png" />-convex domains (i.e. not necessarily real-convex), the formula for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008069.png" />, due to M. Andersson and M. Passare [[#References|[a1]]], is analogous to the Milman–Micchelli formula above, but uses integration over singular chains.
+
Kergin interpolation also carries over to the complex case (as does Lagrange–Hermite interpolation), as follows. Let $\Omega \subset {\bf C} ^ { n }$ be a $\mathbf{C}$-convex domain (i.e. every intersection of $\Omega$ with a complex affine line is connected and simply connected, cf. also [[C-convexity|$\mathbf{C}$-convexity]]) and let $p = \{ p _ { 0 } , \dots , p _ { m } \}$ be $m + 1$ points in $\Omega$. For $f$ holomorphic on $\Omega$ there is a canonical analytic interpolating polynomial, $\kappa _ { p } ( f )$, of total degree $\leq m$ that satisfies properties corresponding to 1), 3), 4) above. If $\Omega$ is convex (identifying $\mathbf{C} ^ { n }$ with $\mathbf{R} ^ { 2 n }$), then $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$. For general $\mathbf{C}$-convex domains (i.e. not necessarily real-convex), the formula for $\kappa _ { p } ( f )$, due to M. Andersson and M. Passare [[#References|[a1]]], is analogous to the Milman–Micchelli formula above, but uses integration over singular chains.
  
There is a generalization of the Hermite remainder formula for Kergin interpolation if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008070.png" /> is a bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008071.png" />-convex domain with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008072.png" /> defining function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008074.png" /> holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008075.png" /> and continuous up to the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008076.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008077.png" /> [[#References|[a1]]]. It is:
+
There is a generalization of the Hermite remainder formula for Kergin interpolation if $\Omega$ is a bounded $\mathbf{C}$-convex domain with $C ^ { 2 }$ defining function $\rho$ and $f$ holomorphic in $\Omega$ and continuous up to the boundary $\partial \Omega$ of $\Omega$ [[#References|[a1]]]. It is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008078.png" /></td> </tr></table>
+
\begin{equation*} ( f - \kappa _ { p } ( f ) ) ( z ) = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008079.png" /></td> </tr></table>
+
\begin{equation*} = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \sum _ { | \alpha | + \beta = n - 1 } \left( \prod _ { j = 0 } ^ { m } \frac { \langle \rho ^ { \prime } ( \xi ) ,\, z - p _ { j } \rangle } { \langle \rho ^ { \prime } ( \xi ) ,\, \xi - p _ { j } \rangle } \right) \times \times \frac { f ( \xi ) \partial \rho ( \xi ) \wedge ( \overline { \partial } \partial \rho ( \xi ) ) ^ { n - 1 } } { \langle \rho ^ { \prime } ( \xi ) ,\, \xi - p \rangle ^ { \alpha } \langle \rho ^ { \prime } ( \xi ) ,\, \xi - z \rangle ^ { \beta + 1 } }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008080.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008081.png" /> multi-index, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008082.png" /> is an integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008085.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008086.png" />.
+
where $\alpha = ( \alpha_ 0 , \dots , \alpha _ { m } )$ is an $( m + 1 )$ multi-index, $\beta \geq 0$ is an integer, $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ for $w \in \mathbf{C} ^ { n }$, $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$, and $\langle \rho ^ { \prime } ( \xi ) , \xi - p \rangle ^ { \alpha } = \prod _ { j = 0 } ^ { m } \langle \rho ^ { \prime } ( \xi ) , \xi - p _ { j } \rangle ^ { \alpha_j } $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Andersson,  M. Passare,  "Complex Kergin Interpolation"  ''J. Approx. Th.'' , '''64'''  (1991)  pp. 214–225</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Kergin,  "A natural interpolation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008087.png" /> functions"  ''J. Approx. Th.'' , '''29'''  (1980)  pp. 278–293</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C.A. Micchelli,  P. Milman,  "A formula for Kergin interpolation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008088.png" />"  ''J. Approx. Th.'' , '''29'''  (1980)  pp. 294–296</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  M. Andersson,  M. Passare,  "Complex Kergin Interpolation"  ''J. Approx. Th.'' , '''64'''  (1991)  pp. 214–225</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  P. Kergin,  "A natural interpolation of $C ^ { K }$ functions"  ''J. Approx. Th.'' , '''29'''  (1980)  pp. 278–293</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  C.A. Micchelli,  P. Milman,  "A formula for Kergin interpolation in $\mathbf{R} ^ { k }$"  ''J. Approx. Th.'' , '''29'''  (1980)  pp. 294–296</td></tr></table>

Latest revision as of 16:56, 1 July 2020

A form of interpolation providing a canonical polynomial of total degree $\leq m$ which interpolates a sufficiently differentiable function at $m + 1$ points in ${\bf R} ^ { n }$. (For $n > 1$ and $m > 1$ there is no unique interpolating polynomial of degree $\leq m$.)

More specifically, given $m + 1$ not necessarily distinct points in ${\bf R} ^ { n }$, $p = \{ p _ { 0 } , \dots , p _ { m } \}$, and $f$ an $m$-times continuously differentiable function on the convex hull of $p$, the Kergin interpolating polynomial $K _ { p } ( f )$ is of degree $\leq m$ and satisfies:

1) $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ for $i = 0 , \dots , m$; if a point $p_j$ is repeated $s \geq 2$ times, then $K _ { p } ( f )$ and $f$ have the same Taylor series up to order $s - 1$ at $p_j$;

2) for any constant-coefficient partial differential operator (cf. also Differential equation, partial) $Q ( \partial / \partial x )$ of degree $k \leq m$, one has $Q ( \partial / \partial x ) ( K _ { p } ( f ) - ( f ) )$ is zero at some point of the convex hull of any $k + 1$ of the points $\{ p _ { 0 } , \dots , p _ { m } \}$; furthermore, if $f$ satisfies an equation of the form $Q ( \partial / \partial x ) ( f ) \equiv 0$, then $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$;

3) for any affine mapping $\lambda : \mathbf R ^ { n } \rightarrow \mathbf R ^ { q }$ (cf. also Affine morphism) and $g$ an $m$-times continuously differentiable function on ${\bf R} ^ { q }$ one has $K _ { p } ( g \circ \lambda ) = K _ { \lambda ( p ) } ( g ) \circ \lambda$, where $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$;

4) the mapping $f \rightarrow K _ { p } ( f )$ is linear and continuous.

(In fact, 3)–4) already characterize the Kergin interpolating polynomial.)

The existence of $K _ { p }$ was established by P. Kergin in 1980 [a2]. For $n = 1$, $K _ { p }$ reduces to Lagrange–Hermite interpolation (cf. also Hermite interpolation formula; Lagrange interpolation formula).

An explicit formula for $K _ { p } ( f )$ was given by P. Milman and C. Micchelli [a3]. The formula shows that the coefficients of $K _ { p } ( f )$ are given by integrating derivatives of $f$ over faces in the convex hull of $p$. More specifically, let $S_r$ denote the simplex

\begin{equation*} S _ { r } = \left\{ ( v _ { 0 } , \dots , v _ { r } ) \in \mathbf{R} ^ { r + 1 } : v _ { j } \geq 0 , \sum _ { j = 0 } ^ { r } v _ { j } = 1 \right\} \end{equation*}

and use the notation

\begin{equation*} \int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }. \end{equation*}

Then

\begin{equation*} K _ { p } (\, f ) = \sum _ { r = 0 } ^ { m } \int _ { [ p _ { 0 } \ldots p _ { r } ] } D _ { x - p _ { 0 }} \cdots D _ { x - p _ { r - 1 } }\,f, \end{equation*}

where $D _ { y } ( f )$ denotes the directional derivative of $f$ in the direction $y \in \mathbf{R} ^ { x }$.

Kergin interpolation also carries over to the complex case (as does Lagrange–Hermite interpolation), as follows. Let $\Omega \subset {\bf C} ^ { n }$ be a $\mathbf{C}$-convex domain (i.e. every intersection of $\Omega$ with a complex affine line is connected and simply connected, cf. also $\mathbf{C}$-convexity) and let $p = \{ p _ { 0 } , \dots , p _ { m } \}$ be $m + 1$ points in $\Omega$. For $f$ holomorphic on $\Omega$ there is a canonical analytic interpolating polynomial, $\kappa _ { p } ( f )$, of total degree $\leq m$ that satisfies properties corresponding to 1), 3), 4) above. If $\Omega$ is convex (identifying $\mathbf{C} ^ { n }$ with $\mathbf{R} ^ { 2 n }$), then $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$. For general $\mathbf{C}$-convex domains (i.e. not necessarily real-convex), the formula for $\kappa _ { p } ( f )$, due to M. Andersson and M. Passare [a1], is analogous to the Milman–Micchelli formula above, but uses integration over singular chains.

There is a generalization of the Hermite remainder formula for Kergin interpolation if $\Omega$ is a bounded $\mathbf{C}$-convex domain with $C ^ { 2 }$ defining function $\rho$ and $f$ holomorphic in $\Omega$ and continuous up to the boundary $\partial \Omega$ of $\Omega$ [a1]. It is:

\begin{equation*} ( f - \kappa _ { p } ( f ) ) ( z ) = \end{equation*}

\begin{equation*} = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \sum _ { | \alpha | + \beta = n - 1 } \left( \prod _ { j = 0 } ^ { m } \frac { \langle \rho ^ { \prime } ( \xi ) ,\, z - p _ { j } \rangle } { \langle \rho ^ { \prime } ( \xi ) ,\, \xi - p _ { j } \rangle } \right) \times \times \frac { f ( \xi ) \partial \rho ( \xi ) \wedge ( \overline { \partial } \partial \rho ( \xi ) ) ^ { n - 1 } } { \langle \rho ^ { \prime } ( \xi ) ,\, \xi - p \rangle ^ { \alpha } \langle \rho ^ { \prime } ( \xi ) ,\, \xi - z \rangle ^ { \beta + 1 } }, \end{equation*}

where $\alpha = ( \alpha_ 0 , \dots , \alpha _ { m } )$ is an $( m + 1 )$ multi-index, $\beta \geq 0$ is an integer, $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ for $w \in \mathbf{C} ^ { n }$, $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$, and $\langle \rho ^ { \prime } ( \xi ) , \xi - p \rangle ^ { \alpha } = \prod _ { j = 0 } ^ { m } \langle \rho ^ { \prime } ( \xi ) , \xi - p _ { j } \rangle ^ { \alpha_j } $.

References

[a1] M. Andersson, M. Passare, "Complex Kergin Interpolation" J. Approx. Th. , 64 (1991) pp. 214–225
[a2] P. Kergin, "A natural interpolation of $C ^ { K }$ functions" J. Approx. Th. , 29 (1980) pp. 278–293
[a3] C.A. Micchelli, P. Milman, "A formula for Kergin interpolation in $\mathbf{R} ^ { k }$" J. Approx. Th. , 29 (1980) pp. 294–296
How to Cite This Entry:
Kergin interpolation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kergin_interpolation&oldid=16059
This article was adapted from an original article by Thomas Bloom (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article