Namespaces
Variants
Actions

Difference between revisions of "Kellogg-Evans theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
''Kellogg's lemma''
 
''Kellogg's lemma''
  
The set of all irregular points of the boundary (cf. [[Irregular boundary point|Irregular boundary point]]) of an arbitrary domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551601.png" /> in the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551602.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551603.png" />, with respect to a generalized solution of the [[Dirichlet problem|Dirichlet problem]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551604.png" /> in the sense of Wiener–Perron (see [[Perron method|Perron method]]) has [[Capacity|capacity]] zero, is a [[Polar set|polar set]] and has type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551605.png" /> (cf. [[Set of type F sigma(G delta)|Set of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551606.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551607.png" />)]]). A corollary of the Kellogg–Evans theorem is that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551608.png" /> is a compact set of positive capacity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k0551609.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k05516010.png" /> is the connected component of the complement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k05516011.png" /> containing the point at infinity, then there exists on the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055160/k05516012.png" /> at least one regular point. The Kellogg–Evans theorem was stated by O.D. Kellogg [[#References|[1]]] as a conjecture, and was first proved by G.C. Evans [[#References|[2]]].
+
The set of all [[irregular boundary point]]s of an arbitrary domain $D$ in the Euclidean space $\mathbf{R}^n$, $n\ge 2$, with respect to a generalized solution of the [[Dirichlet problem]] for $D$ in the sense of Wiener–Perron (see [[Perron method]]) has [[capacity]] zero, is a [[polar set]] and has type [[F-sigma|$F_\sigma$]]. A corollary of the Kellogg–Evans theorem is that if $K$ is a compact set of positive capacity in $\mathbf{R}^n$ and $D$ is the connected component of the complement $\complement K$ containing the point at infinity, then there exists on the boundary $\partial D \subset K$ at least one regular point. The Kellogg–Evans theorem was stated by O.D. Kellogg [[#References|[1]]] as a conjecture, and was first proved by G.C. Evans [[#References|[2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  O.D. Kellogg,  "Foundations of potential theory" , F. Ungar  (1929)  (Re-issue: Springer, 1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.C. Evans,  "Application of Poincaré's sweeping-out process"  ''Proc. Nat. Acad. Sci. USA'' , '''19'''  (1933)  pp. 457–461</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.V. Keldysh,  "On the solvability and stability of the Dirichlet problem"  ''Uspekhi Mat. Nauk'' , '''8'''  (1941)  pp. 171–231  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  O.D. Kellogg,  "Foundations of potential theory" , F. Ungar  (1929)  (Re-issue: Springer, 1967)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  G.C. Evans,  "Application of Poincaré's sweeping-out process"  ''Proc. Nat. Acad. Sci. USA'' , '''19'''  (1933)  pp. 457–461</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  M.V. Keldysh,  "On the solvability and stability of the Dirichlet problem"  ''Uspekhi Mat. Nauk'' , '''8'''  (1941)  pp. 171–231  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 16:25, 22 October 2017

Kellogg's lemma

The set of all irregular boundary points of an arbitrary domain $D$ in the Euclidean space $\mathbf{R}^n$, $n\ge 2$, with respect to a generalized solution of the Dirichlet problem for $D$ in the sense of Wiener–Perron (see Perron method) has capacity zero, is a polar set and has type $F_\sigma$. A corollary of the Kellogg–Evans theorem is that if $K$ is a compact set of positive capacity in $\mathbf{R}^n$ and $D$ is the connected component of the complement $\complement K$ containing the point at infinity, then there exists on the boundary $\partial D \subset K$ at least one regular point. The Kellogg–Evans theorem was stated by O.D. Kellogg [1] as a conjecture, and was first proved by G.C. Evans [2].

References

[1] O.D. Kellogg, "Foundations of potential theory" , F. Ungar (1929) (Re-issue: Springer, 1967)
[2] G.C. Evans, "Application of Poincaré's sweeping-out process" Proc. Nat. Acad. Sci. USA , 19 (1933) pp. 457–461
[3] M.V. Keldysh, "On the solvability and stability of the Dirichlet problem" Uspekhi Mat. Nauk , 8 (1941) pp. 171–231 (In Russian)
[4] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
How to Cite This Entry:
Kellogg-Evans theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kellogg-Evans_theorem&oldid=13358
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article