Namespaces
Variants
Actions

Keldysh-Lavrent'ev theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

on uniform approximation by entire functions

In order that there exist for any continuous complex-valued function $f(z)$ on a continuum $E$ and any rapidly-decreasing positive function $\epsilon(r)$, $0\leq r$ (as $r\to\infty$), having a positive lower bound on any finite interval, an entire function $g(z)$ such that

$$|f(z)-g(z)|<\epsilon(|z|),\quad z\in E,$$

it is necessary and sufficient that $E$ has no interior points and that there exists a function $\eta(t)$, $0<t<+\infty$, that increases to $+\infty$ and is such that any point $z$ of the complement $CE$ can be joined to $\infty$ by a Jordan curve situated outside $E$ and outside the disc $|\zeta|<\eta(|z|)$.

This result of M.V. Keldysh and M.A. Lavrent'ev [1] summarizes numerous investigations on approximation by entire functions initiated by the Carleman theorem (Section 3; see also [2]).

References

[1] M.V. Keldysh, M.A. Lavrent'ev, "Sur un problème de M. Carleman" Dokl. Akad. Nauk SSSR , 23 : 8 (1939) pp. 746–748
[2] S.N. Mergelyan, "Uniform approximation to functions of a complex variable" Transl. Amer. Math. Soc. , 3 (1962) pp. 294–391 Uspekhi Mat. Nauk , 7 : 2 (1952) pp. 31–1A2


Comments

References

[a1] D. Gaier, "Lectures on complex approximation" , Birkhäuser (1987) (Translated from German)
How to Cite This Entry:
Keldysh-Lavrent'ev theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Keldysh-Lavrent%27ev_theorem&oldid=36636
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article