Namespaces
Variants
Actions

Difference between revisions of "Jordan criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (some MR/ZBL added)
 
(2 intermediate revisions by one other user not shown)
Line 5: Line 5:
 
{{TEX|done}}
 
{{TEX|done}}
  
[[Category:Harmonic analysis on euclidean spaces]]
+
[[Category:Harmonic analysis on Euclidean spaces]]
  
A criterion first proved by Jordan for the convergence of Fourier series in {{Cite|Jo}}. The criterion, which generalizes the [[Dirichlet theorem]] on the convergence of Fourier series of piecewise monotone functions, is also called Dirichlet-Jordan test, cf. with {{Cite|Zy}}.
+
A criterion first proved by Jordan for the convergence of Fourier series in {{Cite|Jo}}. The criterion, which generalizes the [[Dirichlet theorem]] on the convergence of the [[Trigonometric series|Fourier series]] of piecewise monotone functions, is also called Dirichlet-Jordan test, cf. with {{Cite|Zy}}.
  
 
'''Theorem'''
 
'''Theorem'''
Line 23: Line 23:
 
|valign="top"|{{Ref|Ed}}|| R. E. Edwards, "Fourier series". Vol. 1. Holt, Rineheart and Winston, 1967.
 
|valign="top"|{{Ref|Ed}}|| R. E. Edwards, "Fourier series". Vol. 1. Holt, Rineheart and Winston, 1967.
 
|-
 
|-
|valign="top"|{{Ref|Jo}}|| C. Jordan,  "Sur la série de Fourier"  ''C.R. Acad. Sci. Paris'' , '''92'''  (1881)  pp. 228–230
+
|valign="top"|{{Ref|Jo}}|| C. Jordan,  "Sur la série de Fourier"  ''C.R. Acad. Sci. Paris'' , '''92'''  (1881)  pp. 228–230   JFM {{ZBL|13.0184.01}}
 
|-
 
|-
|valign="top"|{{Ref|Zy}}|| A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)
+
|valign="top"|{{Ref|Zy}}|| A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988) {{MR|0933759}}  {{ZBL|0628.42001}}
 
|-
 
|-
 
|}
 
|}

Latest revision as of 12:30, 27 September 2012

for the convergence of Fourier series

2020 Mathematics Subject Classification: Primary: 42A20 [MSN][ZBL]

A criterion first proved by Jordan for the convergence of Fourier series in [Jo]. The criterion, which generalizes the Dirichlet theorem on the convergence of the Fourier series of piecewise monotone functions, is also called Dirichlet-Jordan test, cf. with [Zy].

Theorem Let $f: \mathbb R\to\mathbb R$ be a $2\pi$ periodic summable function.

  • If $f$ has bounded variation in an open interval $I$ then its Fourier series converges to $\frac{1}{2} (f (x^+) + f(x^-))$ at every $x\in I$.
  • If in addition $f$ is continuous in $I$ then its Fourier series converges uniformly to $f$ on every closed interval $J\subset I$.

For a proof see Section 10.1 and Exercises 10.13 and 10.14 of [Ed].

References

[Ba] N.K. Bary, "A treatise on trigonometric series" , Pergamon, 1964.
[Ed] R. E. Edwards, "Fourier series". Vol. 1. Holt, Rineheart and Winston, 1967.
[Jo] C. Jordan, "Sur la série de Fourier" C.R. Acad. Sci. Paris , 92 (1881) pp. 228–230 JFM Zbl 13.0184.01
[Zy] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001
How to Cite This Entry:
Jordan criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jordan_criterion&oldid=27695
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article