# Jacobian conjecture

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Keller problem

Let $F = ( F _ { 1 } , \dots , F _ { n } ) : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ be a polynomial mapping, i.e. each $F_{i}$ is a polynomial in $n$ variables. If $F$ has a polynomial mapping as an inverse, then the chain rule implies that the determinant of the Jacobi matrix is a non-zero constant. In 1939, O.H. Keller asked: is the converse true?, i.e. does $\operatorname{det} JF \in \mathbf{C}^*$ imply that $F$ has a polynomial inverse?, [a4]. This problem is now known as Keller's problem but is more often called the Jacobian conjecture. This conjecture is still open (1999) for all $n \geq 2$. Polynomial mappings satisfying $\operatorname{det} JF \in \mathbf{C}^*$ are called Keller mappings. Various special cases have been proved:

1) if $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$, the conjecture holds (S.S. Wang). Furthermore, it suffices to prove the conjecture for all $n \geq 2$ and all Keller mappings of the form $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ where each $H _ { i }$ is either zero or homogeneous of degree $3$ (H. Bass, E. Connell, D. Wright, A. Yagzhev). This case is referred to as the cubic homogeneous case. In fact, it even suffices to prove the conjecture for so-called cubic-linear mappings, i.e. cubic homogeneous mappings such that each $H _ { i }$ is of the form $l _ { i } ^ { 3 }$, where each $l_i$ is a linear form (L. Drużkowski). The cubic homogeneous case has been verified for $n \leq 4$ ($n = 3$ was settled by D. Wright; $n = 4$ was settled by E. Hubbers).

2) A necessary condition for the Jacobian conjecture to hold for all $n \geq 2$ is that for Keller mappings of the form $F = X + F _ { ( 2 ) } + \ldots + F _ { ( d ) }$ with all non-zero coefficients in each $F_{ ( i )}$ positive, the mapping $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is injective (cf. also Injection), where $F_{ ( i )}$ denotes the homogeneous part of degree $i$ of $F$. It is known that this condition is also sufficient! (J. Yu). On the other hand, the Jacobian conjecture holds for all $n \geq 2$ and all Keller mappings of the form $X + F _{( 2 )} + \ldots + F _{( d )}$, where each non-zero coefficient of all $F_{ ( i )}$ is negative (also J. Yu).

3) The Jacobian conjecture has been verified under various additional assumptions. Namely, if $F$ has a rational inverse (O.H. Keller) and, more generally, if the field extension $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ is a Galois extension (L.A. Campbell). Also, properness of $F$ or, equivalently, if $\mathbf{C} [ X ]$ is finite over $\mathbf{C} [ F ]$ (cf. also Extension of a field) implies that a Keller mapping is invertible.

4) If $n = 2$, the Jacobian conjecture has been verified for all Keller mappings $F$ with $\operatorname { deg } F \leq 100$ (T.T. Moh) and if $\operatorname { deg } F _ { 1 }$ or $\operatorname { deg } F _ { 2 }$ is a product of at most two prime numbers (H. Applegate, H. Onishi). Finally, if there exists one line $l \subset \mathbf{C} ^ { 2 }$ such that $F | _ { l } : l \rightarrow \mathbf{C} ^ { 2 }$ is injective, then a Keller mapping $F$ is invertible (J. Gwozdziewicz). There are various seemingly unrelated formulations of the Jacobian conjecture. For example,

a) up to a polynomial coordinate change, $( \partial _ { 1 } , \dots , \partial _ { n } )$ is the only commutative $\mathbf{C} [ X ]$-basis of $\operatorname{Der}_{\mathbf{C}} \mathbf{C}[X]$;

b) every order-preserving $\mathbf{C}$-endomorphism of the $n$th Weyl algebra $A _ { n }$ is an isomorphism (A. van den Essen).

c) for every $d , n \geq 1$ there exists a constant $C ( n , d ) > 0$ such that for every commutative $\mathbf{Q}$-algebra $R$ and every $F \in \operatorname { Aut } _ { R } R [ X ]$ with $\operatorname { det } J F = 1$ and $\operatorname { deg } F \leq d$, one has $\operatorname { deg } F ^ { - 1 } \leq C ( n , d )$ (H. Bass).

d) if $F : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ is a polynomial mapping such that $F ^ { \prime } ( z ) = \operatorname { det } J F ( z ) = 0$ for some $z \in \mathbf{C} ^ { n }$, then $F ( a ) = F ( b )$ for some $a \neq b \in {\bf C} ^ { n }$.

e) if, in the last formulation, one replaces $\mathbf{C}$ by $\mathbf{R}$ the so-called real Jacobian conjecture is obtained, i.e. if $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is a polynomial mapping such that $\operatorname { det } J F ( x ) \neq 0$ for all $x \in \mathbf{R} ^ { n }$, then $F$ is injective. It was shown in 1994 (S. Pinchuk) that this conjecture is false for $n \geq 2$. Another conjecture, formulated by L. Markus and H. Yamabe in 1960 is the global asymptotic stability Jacobian conjecture, also called the Markus–Yamabe conjecture. It asserts that if $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ is a $C ^ { 1 }$-mapping with $F ( 0 ) = 0$ and such that for all $x \in \mathbf{R} ^ { n }$ the real parts of all eigenvalues of $J F ( x )$ are $< 0$, then each solution of $\dot { y } ( t ) = F ( y ( t ) )$ tends to zero if $t$ tends to infinity. The Markus–Yamabe conjecture (for all $n$) implies the Jacobian conjecture. For $n = 2$ the Markus–Yamabe conjecture was proved to be true (R. Fessler, C. Gutierrez). However, in 1995 polynomial counterexamples where found for all $n \geq 3$ (A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Mañosas).

#### References

 [a1] A. van den Essen, "Polynomial automorphisms and the Jacobian conjecture" J. Alev (ed.) et al. (ed.) , Algèbre Noncommutative, Groupes Quantiques et Invariants , SMF (1985) pp. 55–81 [a2] A. van den Essen, "Seven lectures on polynomial automorphisms" A. van den Essen (ed.) , Automorphisms of Affine Spaces , Kluwer Acad. Publ. (1995) pp. 3–39 [a3] H. Bass, E.H. Connell, D. Wright, "The Jacobian conjecture: reduction of degree and formal expansion of the inverse" Bull. Amer. Math. Soc. , 7 (1982) pp. 287–330 [a4] O.H. Keller, "Ganze Cremonatransformationen" Monatschr. Math. Phys. , 47 (1939) pp. 229–306 [a5] A. van den Essen, "Polynomial automorphisms and the Jacobian conjecture" , Birkhäuser (to appear in 2000)
How to Cite This Entry:
Jacobian conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobian_conjecture&oldid=55510
This article was adapted from an original article by A. van den Essen (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article