Namespaces
Variants
Actions

Jacobi polynomials

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Orthogonal polynomials on the interval $ [- 1, 1] $ with the weight function

$$ h ( x) = ( 1 - x) ^ \alpha ( 1 + x) ^ \beta ,\ \ \alpha , \beta > - 1,\ \ x \in [- 1, 1]. $$

The standardized Jacobi polynomials are defined by the Rodrigues formula:

$$ P _ {n} ( x; \alpha , \beta ) = \ P _ {n} ^ {( \alpha , \beta ) } ( x) = $$

$$ = \ \frac{(- 1) ^ {n} }{n! 2 ^ {n} } ( 1 - x) ^ {- \alpha } ( 1 + x) ^ {- \beta } \frac{d ^ {n} }{dx ^ {n} } [( 1 - x) ^ \alpha ( 1 + x ) ^ \beta ( 1 - x ^ {2} ) ^ {n} ], $$

and the orthonormal Jacobi polynomials have the form

$$ \widehat{P} _ {n} ( x; \alpha , \beta ) = $$

$$ = \ \sqrt { \frac{n! ( \alpha + \beta + 2n + 1) \Gamma ( \alpha + \beta + n + 1) }{2 ^ {\alpha + \beta + 1 } \Gamma ( \alpha + n + 1) \Gamma ( \beta + n + 1) } } P _ {n} ( x; \alpha , \beta ). $$

The polynomial $ P _ {n} ( x; \alpha , \beta ) $ satisfies the differential equation

$$ ( 1 - x ^ {2} ) y ^ {\prime\prime} + [ \beta - \alpha - ( \alpha + \beta + 2) x] y ^ \prime + n ( n + \alpha + \beta + 1) y = 0. $$

When $ \alpha \geq - 1/2 $ and $ \beta \geq - 1/2 $, the orthonormal Jacobi polynomials satisfy the following weighted estimate:

$$ ( 1 - x) ^ {( 2 \alpha + 1)/4 } ( 1 + x) ^ {( 2 \beta + 1)/4 } | \widehat{P} _ {n} ( x; \alpha , \beta ) | \leq c _ {1} , $$

$$ x \in [- 1, 1], $$

where the constant $ c _ {1} $ does not depend on $ n $ and $ x $. At $ x = \pm 1 $ the sequence $ \{ \widehat{P} _ {n} ( x; \alpha , \beta ) \} $ grows at a rate $ n ^ {\alpha + 1/2 } $ and $ n ^ {\beta + 1/2 } $, respectively.

Fourier series in Jacobi polynomials (cf. Fourier series in orthogonal polynomials) inside the interval $ (- 1, 1) $ are similar to trigonometric Fourier series. But in neighbourhoods of the end points of this interval, the orthogonality properties of Fourier–Jacobi series are different, because at $ x = \pm 1 $ the orthonormal Jacobi polynomials grow unboundedly. The Fourier–Jacobi series of a function $ f $ is uniformly convergent on $ [- 1, 1] $ if $ f $ is $ p $ times continuously differentiable on this segment and $ f ^ { ( p) } \in \mathop{\rm Lip} \gamma $ with $ p + \gamma > q + 1/2 $, where

$$ q = \max \{ \alpha , \beta \} > - { \frac{1}{2} } . $$

Under these conditions the following inequality holds:

$$ \left | f ( x) - \sum _ {k = 0 } ^ { n } a _ {k} \widehat{P} _ {k} ( x; \alpha , \beta ) \right | \leq \ \frac{c _ {2} }{n ^ {p + \gamma } } n ^ {( 2q + 1)/2 } , $$

$$ x \in [- 1, 1], $$

where the constant $ c _ {2} $ does not depend on $ n $ and $ x $. On the other hand, when $ \alpha \geq - 1/2 $ and $ \beta \geq - 1/2 $, the remainder in the Fourier–Jacobi series for $ f $ satisfies the following weighted estimate:

$$ ( 1 - x ^ {2} ) ^ {1/4} \sqrt {h ( x) } \left | f ( x) - \sum _ {k = 0 } ^ { n } a _ {k} \widehat{P} _ {k} ( x; \alpha , \beta ) \right | \leq $$

$$ \leq \ c _ {3} E _ {n} ( f ) \mathop{\rm ln} n,\ \ x \in [- 1, 1], $$

where $ n \geq 2 $, the constant $ c _ {3} $ does not depend on $ n $ and $ x $, and $ E _ {n} ( f ) $ is the best uniform approximation error (cf. Best approximation) of the continuous function $ f $ on $ [- 1, 1] $ by polynomials of degree not exceeding $ n $.

The Jacobi polynomials were introduced by C.G.J. Jacobi [1] in connection with the solution of the hypergeometric equation. Special cases of the Jacobi polynomials are: the Legendre polynomials (when $ \alpha = \beta = 0 $); the Chebyshev polynomials of the first kind (when $ \alpha = \beta = - 1/2 $); the Chebyshev polynomials of the second kind (when $ \alpha = \beta = 1/2 $); and the ultraspherical polynomials (when $ \alpha = \beta $).

See also Classical orthogonal polynomials.

References

[1] C.G.J. Jacobi, "Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe" J. Reine Angew. Math. , 56 (1859) pp. 149–165
[2] P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1978) (In Russian)

Comments

See also [a4], [a1] and Fourier series in orthogonal polynomials.

Let $ \alpha , \beta > - 1 $ and $ - 1 < x, y < 1 $. Then there is a product formula of the form

$$ \frac{P _ {n} ^ {( \alpha , \beta ) } ( x) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } \frac{P _ {n} ^ {( \alpha , \beta ) } ( y) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } = \ \int\limits _ { - } 1 ^ { 1 } \frac{P _ {n} ^ {( \alpha , \beta ) } ( z) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } \ d \mu _ {x,y} ( z),\ \ n = 0, 1 \dots $$

with positive measure $ d \mu _ {x,y} ( z) = d \mu _ {x,y} ^ {\alpha , \beta } ( z) $ if and only if $ \alpha \geq \beta $ and either $ \beta \geq - 1/2 $ or $ \alpha + \beta \geq 0 $. This yields a positive convolution structure for Jacobi series. For $ \alpha \geq \beta \geq - 1/2 $ the above measure can be computed explicitly from the addition formula for Jacobi polynomials. See [a1], Lecture 4.

For the dual problem one has

$$ P _ {n} ^ {( \alpha , \beta ) } ( x) P _ {m} ^ {( \alpha , \beta ) } ( x) = \ \sum _ {k = | n - m | } ^ { {n } + m } C ( k, m, n) P _ {k} ^ {( \alpha , \beta ) } ( x) , $$

with $ C ( k, m, n) \geq 0 $ if $ \alpha \geq \beta > - 1 $, $ \alpha + \beta \geq - 1 $. This yields a positive dual convolution structure for Jacobi series. See [a1], Lecture 5.

Jacobi polynomials admit many different group-theoretic interpretations. The three most important ones are as matrix elements of the irreducible representations of $ \mathop{\rm SU} ( 2) $( cf. [a5], Chapt. 3), as $ O ( p) \times O ( q) $- invariant spherical harmonics on the unit sphere in $ \mathbf R ^ {p + 1 } $( cf. [a2]) and as zonal spherical functions on the compact symmetric spaces of rank one (cf. [a3], Chapt. 5, §4.3).

References

[a1] R. Askey, "Orthogonal polynomials and special functions" , Reg. Conf. Ser. Appl. Math. , 21 , SIAM (1975)
[a2] B.L.J. Braaksma, B. Meulenbeld, "Jacobi polynomials as spherical harmonics" Nederl. Akad. Wetensch. Proc. Ser. A , 71 (1968) pp. 384–389
[a3] S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4
[a4] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)
[a5] N.Ya. Vilenkin, "Special functions and the theory of group representations" , Amer. Math. Soc. (1968) (Translated from Russian)
How to Cite This Entry:
Jacobi polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_polynomials&oldid=47459
This article was adapted from an original article by P.K. Suetin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article