Namespaces
Variants
Actions

Involutive distribution

From Encyclopedia of Mathematics
Revision as of 16:54, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The geometric interpretation of a completely-integrable differential system on an -dimensional differentiable manifold of class , . A -dimensional distribution (or a differential system of dimension ) of class , , on is a function associating to each point a -dimensional linear subspace of the tangent space such that has a neighbourhood with vector fields on it for which the vectors form a basis of the space at each point . The distribution is said to be involutive if for all points ,

This condition can also be stated in terms of differential forms. The distribution is characterized by the fact that

where are -forms of class , linearly independent at each point ; in other words, is locally equivalent to the system of differential equations . Then is an involutive distribution if there exist -forms on such that

that is, the exterior differentials belong to the ideal generated by the forms .

A distribution of class on is involutive if and only if (as a differential system) it is an integrable system (Frobenius' theorem).

References

[1] C. Chevalley, "Theory of Lie groups" , 1 , Princeton Univ. Press (1946)
[2] R. Narasimhan, "Analysis on real and complex manifolds" , North-Holland & Masson (1968) (Translated from French)
How to Cite This Entry:
Involutive distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Involutive_distribution&oldid=11229
This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article