Namespaces
Variants
Actions

Difference between revisions of "Integral logarithm"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
 
Line 57: Line 57:
 
  \mathop{\rm li} ( x)  =  c
 
  \mathop{\rm li} ( x)  =  c
 
+  \mathop{\rm ln}  |  \mathop{\rm ln}  x | +
 
+  \mathop{\rm ln}  |  \mathop{\rm ln}  x | +
\sum _ { k= } 1 ^  \infty   
+
\sum _ { k= 1} ^  \infty   
  
 
\frac{(  \mathop{\rm ln}  x )  ^ {k} }{k ! k }
 
\frac{(  \mathop{\rm ln}  x )  ^ {k} }{k ! k }
Line 71: Line 71:
 
  \mathop{\rm li} ( z)  =  c +
 
  \mathop{\rm li} ( z)  =  c +
 
  \mathop{\rm ln} ( -  \mathop{\rm ln}  z ) +
 
  \mathop{\rm ln} ( -  \mathop{\rm ln}  z ) +
\sum _ { k= } 1 ^  \infty   
+
\sum _ { k=1 } ^  \infty   
  
 
\frac{(  \mathop{\rm ln}  z )  ^ {k} }{k ! k }
 
\frac{(  \mathop{\rm ln}  z )  ^ {k} }{k ! k }
Line 88: Line 88:
 
$$  
 
$$  
 
\lim\limits _ {\eta \downarrow 0 }  \mathop{\rm li} ( x \pm  i \eta )
 
\lim\limits _ {\eta \downarrow 0 }  \mathop{\rm li} ( x \pm  i \eta )
  =  \mathop{\rm li}  x \mps \pi i ,\ \  
+
  =  \mathop{\rm li}  x \mp \pi i ,\ \  
 
x > 1 .
 
x > 1 .
 
$$
 
$$
Line 131: Line 131:
 
the value  $  \mathop{\rm li} ( x) $
 
the value  $  \mathop{\rm li} ( x) $
 
is a good approximation of  $  \pi ( x) $,  
 
is a good approximation of  $  \pi ( x) $,  
the number of primes smaller than  $  x $(
+
the number of primes smaller than  $  x $
see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]).
+
(see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]).

Latest revision as of 18:28, 25 February 2021


The special function defined, for positive real $ x $, $ x \neq 1 $, by

$$ \mathop{\rm li} ( x) = \ \int\limits _ { 0 } ^ { x } \frac{dt}{ \mathop{\rm ln} t } ; $$

for $ x > 1 $ the integrand has at $ t = 1 $ an infinite discontinuity and the integral logarithm is taken to be the principal value

$$ \mathop{\rm li} ( x) = \ \lim\limits _ {\epsilon \downarrow 0 } \ \left \{ \int\limits _ { 0 } ^ { {1 } - \epsilon } \frac{dt}{ \mathop{\rm ln} t } + \int\limits _ {1 + \epsilon } ^ { x } \frac{dt}{ \mathop{\rm ln} t } \right \} . $$

The graph of the integral logarithm is given in the article Integral exponential function. For $ x $ small:

$$ \mathop{\rm li} ( x) \approx \frac{x}{ \mathop{\rm ln} ( 1 / x ) } . $$

The integral logarithm has for positive real $ x $ the series representation

$$ \mathop{\rm li} ( x) = c + \mathop{\rm ln} | \mathop{\rm ln} x | + \sum _ { k= 1} ^ \infty \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } ,\ \ k > 0 ,\ \ x \neq 1 , $$

where $ c = 0.5772 \dots $ is the Euler constant. As a function of the complex variable $ z $,

$$ \mathop{\rm li} ( z) = c + \mathop{\rm ln} ( - \mathop{\rm ln} z ) + \sum _ { k=1 } ^ \infty \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } $$

is a single-valued analytic function in the complex $ z $- plane with slits along the real axis from $ - \infty $ to 0 and from 1 to $ + \infty $( the imaginary part of the logarithms is taken within the limits $ - \pi $ and $ \pi $). The behaviour of $ \mathop{\rm li} x $ along $ ( 1 , + \infty ) $ is described by

$$ \lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) = \mathop{\rm li} x \mp \pi i ,\ \ x > 1 . $$

The integral logarithm is related to the integral exponential function $ \mathop{\rm Ei} ( x) $ by

$$ \mathop{\rm li} ( x) = \ \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ x < 1 ; \ \ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 . $$

For real $ x > 0 $ one sometimes uses the notation

$$ \mathop{\rm Li} ( x) = \ \left \{ \begin{array}{ll} \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ \end{array} \right .$$

For references, see Integral cosine.

Comments

The function $ \mathop{\rm li} $ is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for $ z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} $.

The series representation for positive $ x $, $ x \neq 1 $, is then also said to define the modified logarithmic integral, and is the boundary value of $ \mathop{\rm li} ( x + i \eta ) \pm \pi i $, $ x > 1 $, $ \eta \rightarrow 0 $. For real $ x > 1 $ the value $ \mathop{\rm li} ( x) $ is a good approximation of $ \pi ( x) $, the number of primes smaller than $ x $ (see de la Vallée-Poussin theorem; Distribution of prime numbers; Prime number).

How to Cite This Entry:
Integral logarithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_logarithm&oldid=51645
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article