Namespaces
Variants
Actions

Integral exponential function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The special function defined for real $ x \neq 0 $ by the equation

$$ \mathop{\rm Ei} ( x) = \ \int\limits _ {- \infty } ^ { x } \frac{e ^ {t} }{t} d t = - \int\limits _ { - x} ^ \infty \frac{e ^ {-t} }{t} d t . $$

The graph of the integral exponential function is illustrated in Fig..

Figure: i051440a

Graphs of the functions $ y = \mathop{\rm Ei} ( - x ) $, $ y = \mathop{\rm Ei} ^ {*} ( x) $ and $ y = \mathop{\rm Li} ( x) $.

For $ x > 0 $, the function $ e ^ {t} / t $ has an infinite discontinuity at $ t = 0 $, and the integral exponential function is understood in the sense of the principal value of this integral:

$$ \mathop{\rm Ei} ( x) = \ \lim\limits _ {\epsilon \rightarrow + 0 } \ \left \{ \int\limits _ {- \infty } ^ \epsilon \frac{e ^ {t} }{t} d t + \int\limits _ \epsilon ^ { x } \frac{e ^ {t} }{t} d t \right \} . $$

The integral exponential function can be represented by the series

$$ \tag{1 } \mathop{\rm Ei} ( x) = \ c + \mathop{\rm ln} ( - x ) + \sum_{k=1}^ \infty \frac{x ^ {k} }{k!k} ,\ \ x < 0 , $$

and

$$ \tag{2 } \mathop{\rm Ei} ( x) = c + \mathop{\rm ln} ( x) + \sum_{k=1}^ \infty \frac{x ^ {k} }{k!k} ,\ \ x > 0 , $$

where $ c = 0.5772 \dots $ is the Euler constant.

There is an asymptotic representation:

$$ \mathop{\rm Ei} ( - x ) \approx \frac{e ^ {- x} }{x} \left ( 1 - \frac{1!}{x} + \frac{2!} {x ^ {2} } - \frac{3!} {x ^ {3} } + \dots \right ) ,\ \ x \rightarrow + \infty . $$

As a function of the complex variable $ z $, the integral exponential function

$$ \mathop{\rm Ei} ( z) = \ C + \mathop{\rm ln} ( - z ) + \sum_{k=1}^ \infty \frac{z ^ {k} }{k!k} ,\ \ | \mathop{\rm arg} ( - z ) | < \pi , $$

is a single-valued analytic function in the $ z $- plane slit along the positive real semi-axis $ ( 0 < \mathop{\rm arg} z < 2 \pi ) $; here the value of $ \mathop{\rm ln} ( - z) $ is chosen such that $ - \pi < { \mathop{\rm Im} \mathop{\rm ln} } (- z) < \pi $. The behaviour of $ \mathop{\rm Ei} ( z) $ close to the slit is described by the limiting relations:

$$ \left . \begin{array}{c} \lim\limits _ {\eta \downarrow 0 } \ \mathop{\rm Ei} ( z + i \eta ) = \ \mathop{\rm Ei} ( z) - i \pi , \\ \lim\limits _ {\eta \downarrow 0 } \ \mathop{\rm Ei} ( z - i \eta ) = \ \mathop{\rm Ei} ( z) + i \pi , \\ \end{array} \right \} \ \ z = x + i y. $$

The asymptotic representation in the region $ 0 < \mathop{\rm arg} z < 2 \pi $ is:

$$ \mathop{\rm Ei} ( z) \sim \ \frac{e ^ {z} }{z} \left ( \frac{1!}{z} + \frac{2!}{z ^ {2} } + \dots \frac{k!} {z ^ {k} } + \dots \right ) ,\ \ | z | \rightarrow \infty . $$

The integral exponential function is related to the integral logarithm $ \mathop{\rm li} ( x) $ by the formulas

$$ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 , $$

$$ \mathop{\rm Ei} ( \mathop{\rm ln} x ) = \mathop{\rm li} ( x) ,\ x < 1 ; $$

and to the integral sine $ \mathop{\rm Si} ( x) $ and the integral cosine $ \mathop{\rm Ci} ( x) $ by the formulas:

$$ \mathop{\rm Ei} ( \pm i x ) = \ \mathop{\rm Ci} ( x) \pm i \mathop{\rm Si} ( x) \mps \frac{\pi i }{2} ,\ \ x > 0 . $$

The differentiation formula is:

$$ \frac{d ^ {n} \mathop{\rm Ei} ( - x ) }{d x ^ {n} } = \ ( - 1 ) ^ {n-1} ( n - 1 ) ! x ^ {- x} e ^ {-x} e _ {n-1} ( x) ,\ \ n = 1 , 2 , . . . . $$

The following notations are sometimes used:

$$ \operatorname{\rm Ei}^+ ( z) = \ \mathop{\rm Ei} ( z + i 0 ) ,\ \ \operatorname{\rm Ei}^- ( z) = \ \mathop{\rm Ei} ( z - i 0 ) , $$

$$ \operatorname{\rm Ei} ^ {*} ( z) = { \mathop{\rm Ei} ( z) } bar = \mathop{\rm Ei} ( z) + \pi i . $$

References

[1] H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953)
[2] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)
[3] A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)
[4] N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian)

Comments

The function $\mathop{\rm Ei}$ is usually called the exponential integral.

Instead of by the series representation, for complex values of $ z $( $ x $ not positive real) the function $ \mathop{\rm Ei} ( z) $ can be defined by the integal (as for real $ x \neq 0 $); since the integrand is analytic, the integral is path-independent in $ \mathbf C \setminus \{ {x \in \mathbf R } : {x \geq 0 } \} $.

Formula (1) with $ x $ replaced by $ z $ then holds for $ | \mathop{\rm arg} ( - z ) | < \pi $, and the function defined by (2) (for $ x > 0 $) is also known as the modified exponential integral.


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Integral exponential function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_exponential_function&oldid=54983
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article