Namespaces
Variants
Actions

Integer

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

See Number.

Comments

An integer is an element of the ring of integers $\mathbf Z=\{\dots,-1,0,1,\dots\}$. The ring $\mathbf Z$ is the minimal ring which extends the semi-ring of natural numbers $\mathbf N=\{1,2,\dots\}$, cf. Natural number. Cf. Number for an axiomatic characterization of $\mathbf N$.

In algebraic number theory the term integer is also used to denote elements of an algebraic number field that are integral over $\mathbf Z$. I.e. if $k/\mathbf Q$ is an algebraic field extension, where $\mathbf Q$ is the field of rational numbers, the field of fractions of $\mathbf Z$, then the integers of $k$ are the elements of the integral closure of $\mathbf Z$ in $k$.

The integers of the algebraic number field $\mathbf Q(i)$, $i^2+1=0$, are the elements $a+bi$, $a,b\in\mathbf Z$. They are called the Gaussian integers.

Let $p$ be a prime number. A $p$-adic integer is an element of $\mathbf Z_p$, the closure of $\mathbf Z$ in the field $\mathbf Q_p$ of $p$-adic numbers. The field $\mathbf Q_p$ is the topological completion of the field $\mathbf Q$ for the $p$-adic topology on $\mathbf Q$ which is defined by the non-Archimedean norm

$$\left|\frac ab\right|_p=p^{\nu_p(b)-\nu_p(a)},\quad a,b\in\mathbf Z,$$

where $\nu_p(a)=r$ if $p^r$ divides $a$ and $p^{r+1}$ does not divide $a$, and $|0|_p=0$.

References

[a1] Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1975) (Translated from Russian) (German translation: Birkhäuser, 1966)
How to Cite This Entry:
Integer. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integer&oldid=35203