Namespaces
Variants
Actions

Illumination problem

From Encyclopedia of Mathematics
Revision as of 17:26, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The problem of determining the minimum number of directions of pencils of parallel rays, or number of sources, illuminating the whole boundary of a convex body. Let be a convex body in an -dimensional linear space , let and be respectively its boundary and its interior, and assume that . The best known illumination problems are the following.

1) Let be a certain direction in . A point is called illuminated from the outside by the direction if the straight line passing through parallel to passes through a certain point and if the direction of the vector coincides with . The minimum number of directions in the space is sought that is sufficient to illuminate the whole set .

2) Let be a point of . A point is called illuminated from the outside by the point if the straight line defined by the points and passes through a point and if the vectors and have the same direction. The minimum number of points from is sought that is sufficient to illuminate the whole set .

3) Let be a point of . A point is illuminated from within by the point if the straight line defined by the points and passes through a point and if the vectors and have opposite directions. The minimum number of points from is sought that is sufficient to illuminate the whole set from within.

4) A system of points is said to be fixing for if it possesses the properties: a) is sufficient to illuminate the whole set from within; and b) does not have any proper subset sufficient to illuminate the set from within. The maximum number of points of a fixing system is sought for the body .

Problem 1) was proposed in connection with the Hadwiger hypothesis (see [1]): The minimum number of bodies homothetic to a bounded with homothety coefficient , , sufficient for covering , satisfies the inequality , whereby the value characterizes a parallelepiped. For bounded, . If is unbounded, then , and there exist bodies such that or (see [1]).

Problem 2) was proposed in connection with problem 1). For bounded, the equality holds. If is not bounded, then and . The number for any unbounded takes one of the values 1, 2, 3, 4, (see [1]).

The solution of problem 3) takes the form: The number is defined if and only if is not a cone. In this case,

whereby characterizes an -dimensional simplex of the space (see [1]).

For problem 4) (see [2]), it has been conjectured that if is bounded, the inequality

holds.

Every illumination problem is closely linked to a special covering of the body (cf. Covering (of a set)) (see [1]).

References

[1] V.G. Boltyanskii, P.S. Soltan, "The combinatorial geometry of various classes of convex sets" , Kishinev (1978) (In Russian)
[2] B. Grünbaum, "Fixing systems and inner illumination" Acta Math. Acad. Sci. Hung. , 15 (1964) pp. 161–163


Comments

References

[a1] R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , Contributions to geometry , Birkhäuser (1979) pp. 13–59
[a2] V. [V.G. Boltyanskii] Boltjansky, I. [I. Gokhberg] Gohberg, "Results and problems in combinatorial geometry" , Cambridge Univ. Press (1985) (Translated from Russian)
How to Cite This Entry:
Illumination problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Illumination_problem&oldid=18579
This article was adapted from an original article by P.S. Soltan (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article