# Difference between revisions of "Homothety"

(TeX) |
Ulf Rehmann (talk | contribs) m (Typo) |
||

Line 17: | Line 17: | ||

====Comments==== | ====Comments==== | ||

− | A | + | A homothety is also called a central dilatation (cf. also [[Dilatation|Dilatation]]). |

====References==== | ====References==== | ||

<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR></table> |

## Latest revision as of 19:50, 2 May 2019

A transformation of Euclidean space with respect to a certain point $O$ that brings each point $M$ in a one-to-one correspondence with a point $M'$ on the straight line $OM$ in accordance with the rule

$$OM'=kOM,$$

where $k$ is a constant number, not equal to zero, which is known as the homothety ratio. The point $O$ is said to be the centre of the homothety. If $k>0$, the points $M$ and $M'$ lie on the same ray; if $k<0$, on different sides from the centre. The point $O$ corresponds to itself. A homothety is a special case of a similarity. Two figures called homothetic (similar or similarly situated) if each one consists of points obtained from the other figure by a homothety with respect to some centre.

Simplest properties of a homothety. A homothety with $k\neq1$ is a one-to-one mapping of the Euclidean space onto itself, with one fixed point. If $k=1$, the homothety is the identity transformation. A homothety maps a straight line (a plane) passing through its centre into itself; a straight line (a plane) not passing through its centre into a straight line (a plane) parallel to it; the angles between straight lines (planes) are preserved under this transformation. Under a homothety segments are mapped into parallel segments with a length which is $|k|$ times the original length, i.e. a homothety is a contraction (expansion) of the Euclidean space at the point $O$. Under a homothety a sphere is mapped into another sphere, and the centre of the former is mapped to the centre of the latter.

A homothety is most often specified (geometrically) by the homothety centre and a pair of corresponding points or by two pairs of corresponding points. A homothety is an affine transformation with one (and only one) fixed point.

In $n$-dimensional Euclidean space a homothety leaves the set of all $k$-dimensional subspaces invariant, $k<n$.

A homothety is defined in a similar manner in pseudo-Euclidean spaces. A homothety in Riemannian spaces and in pseudo-Riemannian spaces is defined as a transformation that transforms the metric of the space into itself, up to a constant factor. The set of homotheties forms a Lie group of transformations, and the $r$-parameter homothety group of a Riemannian space contains the $(r-1)$-parameter normal subgroup of displacements.

#### Comments

A homothety is also called a central dilatation (cf. also Dilatation).

#### References

[a1] | M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French) |

[a2] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961) |

[a3] | E. Artin, "Geometric algebra" , Interscience (1957) |

**How to Cite This Entry:**

Homothety.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Homothety&oldid=31634