Namespaces
Variants
Actions

Homology sequence

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An exact sequence, infinite on both sides, of homology groups of three complexes, connected by a short exact sequence. Let $ 0 \rightarrow K _ {\mathbf . } \rightarrow L _ {\mathbf . } \rightarrow M _ {\mathbf . } \rightarrow 0 $ be an exact sequence of chain complexes in an Abelian category. Then there are morphisms

$$ \partial _ {n} : H _ {n} ( M _ {\mathbf . } ) \rightarrow H _ {n - 1 } ( K _ {\mathbf . } ) $$

defined for all $ n $. They are called connecting (or boundary) morphisms. Their definition in the category of modules is especially simple: For $ h \in H _ {n} ( M _ {\mathbf . } ) $ a pre-image $ x \in L _ {n} $ is chosen; $ d x $ will then be the image of an element $ z \in Z _ {n-} 1 ( K _ {\mathbf . } ) $ whose homology class is $ \partial _ {n} ( h) $. The sequence of homology groups

$$ \dots \rightarrow ^ { {\partial _ { n} + 1 } } \ H _ {n} ( K _ {\mathbf . } ) \rightarrow H _ {n} ( L _ {\mathbf . } ) \rightarrow \ H _ {n} ( M _ {\mathbf . } ) \rightarrow ^ { {\partial _ n } } \ H _ {n - 1 } ( K _ {\mathbf . } ) \rightarrow \dots , $$

constructed with the aid of the connecting morphisms, is exact; it is called the homology sequence. Thus, the homology groups form a homology functor on the category of complexes.

Cohomology sequences are defined in a dual manner.

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)
How to Cite This Entry:
Homology sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_sequence&oldid=47262
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article