Holomorphic envelope

From Encyclopedia of Mathematics
Revision as of 17:03, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

envelope of holomorphy, of a (Riemann) domain

The largest domain with the following property: Any holomorphic function in can be holomorphically continued to . The problem of constructing the envelope of holomorphy for a given domain arises in connection with the fact that in a complex space , , not all domains are domains of holomorphy (cf. Domain of holomorphy), i.e. there exist domains such that any function that is holomorphic in this domain has a holomorphic continuation to a larger (usually not single-layered) domain. The envelope of holomorphy is a domain of holomorphy; if is a domain of holomorphy, then .

In applications in axiomatic quantum field theory there arises the non-trivial problem of constructing envelopes of holomorphy of a special kind, which reflect the physical requirements of spectrality, local commutativity and Lorentz covariance. The Bogolyubov theorem on the edge-of-the-wedge and continuity theorems (cf. Continuity theorem) are especially useful in this connection.


[1] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)
[2] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian)



[a1] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) pp. Chapt. 1, Sect. G
How to Cite This Entry:
Holomorphic envelope. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by V.S. Vladimirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article