Namespaces
Variants
Actions

Hewitt realcompactification

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Hewitt compactification, Hewitt extension

An extension of a topological space that is maximal relative to the property of extending real-valued continuous functions; it was proposed by E. Hewitt in [1].

A homeomorphic imbedding $\nu : X \rightarrow Y$ is called a functional extension if $\nu(X)$ is dense in $Y$ and if for every continuous function $f : X \rightarrow \mathbb{R}$ there exists a continuous function $\bar f : Y \rightarrow \mathbb{R}$ such that $f = \bar f \nu$. A completely-regular space $X$ is called a Q-space or a functionally-complete space if every functional extension of it is a homeomorphism, that is, if $\nu(X) = Y$. A functional extension $\nu : X \rightarrow Y$ of a completely-regular space is called a Hewitt extension if $Y$ is a Q-space. A completely-regular space has a Hewitt extension, and the latter is unique up to a homeomorphism.

The Hewitt extension can also be defined as the subspace of those points $y$ of the Stone–Čech compactification $\beta X$ for which every continuous real-valued function $f : X \rightarrow \mathbb{R}$ can be extended to $X \cup \{y\}$.

References

[1] E. Hewitt, "Rings of real-valued continuous functions, I" Trans. Amer. Math. Soc. , 64 (1948) pp. 45–99
[2] R. Engelking, "Outline of general topology" , North-Holland (1968) (Translated from Polish)
[3] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian)


Comments

The Hewitt extension is not a compactification, hence the phrase "Hewitt compactification" is rarely used.

How to Cite This Entry:
Hewitt realcompactification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hewitt_realcompactification&oldid=34336
This article was adapted from an original article by I.G. Koshevnikova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article