Namespaces
Variants
Actions

Height, in Diophantine geometry

From Encyclopedia of Mathematics
Revision as of 17:25, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A certain numerical function on the set of solutions of a Diophantine equation (cf. Diophantine equations). In the simplest case of a solution in integers of a Diophantine equation, the height is a function of the solution, and equals . It is encountered in this form in Fermat's method of descent. Let be a projective algebraic variety defined over a global field . The height is a class of real-valued functions defined on the set of rational points and depending on a morphism of the variety into the projective space . Each function in this class is also called a height. From the point of view of estimating the number of rational points there are no essential differences between the functions in this class: for any two functions and there exist constants and , such that . Such functions are called equivalent, and this equivalence is denoted (here) as .

Fundamental properties of the height. The function is functorial with respect to , i.e. for any morphism and morphism ,

If the morphisms , and are defined by invertible sheaves , and , and if , then . The set of points of bounded height is finite in the following sense: If the basic field is an algebraic number field, the set is finite; if it is an algebraic function field with field of constants , the elements of depend on a finite number of parameters from the field ; in particular, is finite if the field is finite. Let run through the set of all norms of . One may then define the height of a point of the projective space with coordinates from as

(*)

This is well defined because of the product formula , . Let be an arbitrary projective variety over and let be a closed imbedding of into the projective space; the height may then be obtained by transferring the function (*), using the imbedding, to the set . Various projective imbeddings, corresponding to the same sheaf , define equivalent functions on . A linear extension yields the desired function . The function is occasionally replaced by its logarithm — the so-called logarithmic height.

The above estimates may sometimes follow from exact equations [3], [4], [5]. There is a variant of the height function — the Néron–Tate height — which is defined on Abelian varieties and behaves as a functor with respect to the morphisms of Abelian varieties preserving the zero point. For the local aspect see [6]. The local components of a height constructed there play the role of intersection indices in arithmetic.

References

[1] A. Weil, "Number theory and algebraic geometry" , Proc. Internat. Congress Mathematicians (Cambridge, 1950) , 2 , Amer. Math. Soc. (1952) pp. 90–100
[2] S. Lang, "Diophantine geometry" , Interscience (1962)
[3] D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974) (Appendix in Russian translation: Yu.I. Manin; The Mordell–Weil theorem (in Russian))
[4] Yu.I. Manin, "Height of theta points on an Abelian manifold, their variants and applications" Izv. Akad. Nauk SSSR Ser. Mat. , 28 (1964) pp. 1363–1390 (In Russian)
[5] D. Mumford, "A remark on Mordell's conjecture" Amer. J. Math. , 87 (1965) pp. 1007–1016
[6] A. Néron, "Quasi-fonctions et hauteurs sur les variétés abéliennes" Ann. of Math. (2) , 82 (1965) pp. 249–331


Comments

The notion of height is a major tool in arithmetic algebraic geometry. It plays an important role in Faltings' proof of the Tate conjecture on endomorphisms of Abelian varieties over number fields, the Shafarevich conjecture that there are only finitely many isomorphism classes of Abelian varieties over a number field over of given dimension with good reduction outside a finite set of places of , and the Mordell conjecture on the finiteness of the set of rational points of a smooth curve of genus over a number field . Heights also play an important role in Arakelov intersection theory, which via moduli spaces of algebraic curves has also become important in string theory in mathematical physics.

References

[a1] G. Faltings (ed.) G. Wüstholtz (ed.) , Rational points , Vieweg (1986)
How to Cite This Entry:
Height, in Diophantine geometry. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Height,_in_Diophantine_geometry&oldid=18249
This article was adapted from an original article by A.N. Parshin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article