Namespaces
Variants
Actions

Difference between revisions of "Hankel operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex done)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 165 formulas, 161 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
The Hankel operators form a class of operators which is one of the most important classes of operators in function theory; it has many applications in different fields of mathematics and applied mathematics.
 
The Hankel operators form a class of operators which is one of the most important classes of operators in function theory; it has many applications in different fields of mathematics and applied mathematics.
  
A Hankel operator can be defined as an operator whose [[Matrix|matrix]] has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200201.png" /> (such matrices are called Hankel matrices, cf. also [[Padé approximation|Padé approximation]]). Finite matrices whose entries depend only on the sum of the coordinates were studied first by H. Hankel [[#References|[a8]]]. One of the first results on infinite Hankel matrices was obtained by L. Kronecker [[#References|[a11]]], who described the finite-rank Hankel matrices. Hankel operators played an important role in moment problems [[#References|[a8]]] as well as in other classical problems of analysis.
+
A Hankel operator can be defined as an operator whose [[Matrix|matrix]] has the form $( \alpha _ { j  + k} ) _ { j , k  \geq 0}$ (such matrices are called Hankel matrices, cf. also [[Padé approximation]]). Finite matrices whose entries depend only on the sum of the coordinates were studied first by H. Hankel [[#References|[a8]]]. One of the first results on infinite Hankel matrices was obtained by L. Kronecker [[#References|[a11]]], who described the finite-rank Hankel matrices. Hankel operators played an important role in moment problems [[#References|[a8]]] as well as in other classical problems of analysis.
  
The study of Hankel operators on the Hardy class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200202.png" /> was started by Z. Nehari [[#References|[a14]]] and P. Hartman [[#References|[a9]]] (cf. also [[Hardy classes|Hardy classes]]). The following boundedness criterion was proved in [[#References|[a14]]]: A matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200203.png" /> determines a bounded operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200204.png" /> if and only if there exists a bounded function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200205.png" /> on the unit circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200206.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200208.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200209.png" /> is the sequence of Fourier coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002010.png" /> (cf. also [[Fourier series|Fourier series]]). Moreover, the norm of the operator with matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002011.png" /> is equal to
+
The study of Hankel operators on the Hardy class $H ^ { 2 }$ was started by Z. Nehari [[#References|[a14]]] and P. Hartman [[#References|[a9]]] (cf. also [[Hardy classes|Hardy classes]]). The following boundedness criterion was proved in [[#References|[a14]]]: A matrix $( \alpha _ { j  + k} ) _ { j , k  \geq 0}$ determines a bounded operator on $\text{l} ^ { 2 }$ if and only if there exists a bounded function $\phi$ on the unit circle $\bf T$ such that $\widehat { \phi } ( j ) = \alpha_j$, $j \geq 0$, where $\{ \hat { \phi } ( j ) \} _ { j \geq 0 }$ is the sequence of Fourier coefficients of $\phi$ (cf. also [[Fourier series|Fourier series]]). Moreover, the norm of the operator with matrix $( \alpha _ { j  + k} ) _ { j , k  \geq 0}$ is equal to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002012.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { inf } \left\{ \| \phi \| _ { \infty } : \phi \in L ^ { \infty } , \widehat { \phi } ( j ) = \alpha _ { j } \text { for } j \geq 0 \right\}. \end{equation*}
  
The following compactness criterion was obtained in [[#References|[a9]]]: The operator with matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002013.png" /> is compact (cf. also [[Compact operator|Compact operator]]) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002015.png" />, for some [[Continuous function|continuous function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002016.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002017.png" />.
+
The following compactness criterion was obtained in [[#References|[a9]]]: The operator with matrix $( \alpha _ { j  + k} ) _ { j , k  \geq 0}$ is compact (cf. also [[Compact operator|Compact operator]]) if and only if $\alpha_{ j} = \widehat { \phi } ( j )$, $j \geq 0$, for some [[Continuous function|continuous function]] $\phi$ on $\bf T$.
  
Later it became possible to state these boundedness and compactness criteria in terms of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002019.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002021.png" /> of functions of bounded mean oscillation consists of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002022.png" /> such that
+
Later it became possible to state these boundedness and compactness criteria in terms of the spaces $\operatorname{BMO}$ and $\operatorname{VMO}$. The space $\operatorname{BMO}$ of functions of bounded mean oscillation consists of functions $f \in L ^ { 1 } ( \mathbf{T} )$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002023.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty, \end{equation*}
  
where the supremum is taken over all intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002026.png" /> is the [[Lebesgue measure|Lebesgue measure]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002027.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002028.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002030.png" /> of functions of vanishing mean oscillation consists of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002031.png" /> such that
+
where the supremum is taken over all intervals $I$ of $\bf T$, $| l | = m ( l )$ is the [[Lebesgue measure|Lebesgue measure]] of $I$, and $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$. The space $\operatorname{VMO}$ of functions of vanishing mean oscillation consists of functions $f \in L ^ { 1 } ( \mathbf{T} )$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002032.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { lim } _ { | I | \rightarrow 0 } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m = 0. \end{equation*}
  
Cf. also [[BMO-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002033.png" />-space]]; [[VMO-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002034.png" />-space]].
+
Cf. also [[BMO-space|$\operatorname{BMO}$-space]]; [[VMO-space|$\operatorname{VMO}$-space]].
  
A combination of the Nehari and Fefferman theorems (see [[#References|[a6]]]) gives the following boundedness criterion: The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002035.png" /> determines a bounded operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002036.png" /> if and only if the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002038.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002039.png" />. Similarly, the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002040.png" /> determines a compact operator if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002041.png" />.
+
A combination of the Nehari and Fefferman theorems (see [[#References|[a6]]]) gives the following boundedness criterion: The matrix $( \alpha _ { j  + k} ) _ { j , k  \geq 0}$ determines a bounded operator on $\text{l} ^ { 2 }$ if and only if the function $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ on $\bf T$ belongs to $\operatorname{BMO}$. Similarly, the matrix $( \alpha _ { j  + k} ) _ { j , k  \geq 0}$ determines a compact operator if and only if $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j } \in \operatorname{VMO}$.
  
It is convenient to use different realizations of Hankel operators. The following realization is very important in function theory. Given a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002042.png" />, one defines the Hankel operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002043.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002044.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002046.png" /> is the orthogonal projection onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002047.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002048.png" /> is called a symbol of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002049.png" /> (the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002050.png" /> has infinitely many different symbols: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002051.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002052.png" />). The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002053.png" /> has Hankel matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002054.png" /> in the orthonormal basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002055.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002056.png" /> and the orthonormal basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002057.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002058.png" />. By Hartman's theorem above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002059.png" /> is compact if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002060.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002061.png" /> is the closed subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002062.png" /> consisting of the functions of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002063.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002065.png" /> a continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002066.png" />.
+
It is convenient to use different realizations of Hankel operators. The following realization is very important in function theory. Given a function $\phi \in L ^ { \infty }$, one defines the Hankel operator $H _ { \phi } : H ^ { 2 } \rightarrow H _ { - } ^ { 2 }$ by $H _ { \phi } f = \mathcal{P} _ { - } \phi f$. Here, $H_- ^ { 2 } = L ^ { 2 } \ominus H ^ { 2 }$ and $\mathcal{P}_ {-}$ is the orthogonal projection onto $H_{-} ^ { 2 }$. A function $\phi$ is called a symbol of $H _ { \phi }$ (the operator $H _ { \phi }$ has infinitely many different symbols: $H _ { \phi } = H _ { \phi + \psi }$ for $\psi \in H ^ { \infty }$). The operator $H _ { \phi }$ has Hankel matrix $( \hat { \phi } ( - j - k - 1 ) )_{ j > 0 , k \geq 0}$ in the orthonormal basis $\{ z ^ { k } \} _ { k \geq 0 }$ of $H ^ { 2 }$ and the orthonormal basis $\{ \overline{z} \square ^ { j } \}_{j > 0}$ of $H_{-} ^ { 2 }$. By Hartman's theorem above, $H _ { \phi }$ is compact if and only if $\phi \in H ^ { \infty } + C$ where $H ^ { \infty } + C$ is the closed subalgebra of $L^{\infty}$ consisting of the functions of the form $f + g$ with $f \in H ^ { \infty }$ and $g$ a continuous function on $\bf T$.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002067.png" />, there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002068.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002069.png" />; it is called a best approximation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002071.png" /> by analytic functions in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002072.png" />-norm. In general, such a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002073.png" /> is not unique (see [[#References|[a10]]]). However, if the essential norm (i.e., the distance to the set of compact operators) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002074.png" /> is less than its norm, then there is a unique best approximation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002075.png" /> and the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002076.png" /> has constant modulus [[#References|[a1]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002077.png" />. In [[#References|[a2]]] it is shown that if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002078.png" /> contains at least two different functions, then this set contains a function of constant modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002079.png" />; a formula which parameterizes all functions in this set has also been obtained [[#References|[a2]]].
+
For $\phi \in L ^ { \infty }$, there exists a function $f \in H ^ { \infty }$ such that $\| \phi - f \| _ { L^\infty } = \| H _ { \phi } \|$; it is called a best approximation of $\phi$ by analytic functions in the $L^{\infty}$-norm. In general, such a function $f$ is not unique (see [[#References|[a10]]]). However, if the essential norm (i.e., the distance to the set of compact operators) of $H _ { \phi }$ is less than its norm, then there is a unique best approximation $\phi$ and the function $\phi - f$ has constant modulus [[#References|[a1]]]. Let $\rho \geq \| H _ { \phi } \|$. In [[#References|[a2]]] it is shown that if the set $\{ f \in H ^ { \infty } : \| \phi - f \| _ { L } \infty \leq \rho \}$ contains at least two different functions, then this set contains a function of constant modulus $\rho$; a formula which parameterizes all functions in this set has also been obtained [[#References|[a2]]].
  
A description of the Hankel operators of finite rank was given in [[#References|[a11]]]: The Hankel operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002080.png" /> has finite rank if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002081.png" /> is a rational function. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002082.png" />.
+
A description of the Hankel operators of finite rank was given in [[#References|[a11]]]: The Hankel operator $H _ { \phi }$ has finite rank if and only if $\mathcal{P} - \phi$ is a rational function. Moreover, $\operatorname{rank} H _ { \phi } = \operatorname { deg } {\cal P}_{-} \phi$.
  
Recall that for a bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002083.png" /> on a [[Hilbert space|Hilbert space]], the singular values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002084.png" /> are defined by
+
Recall that for a bounded linear operator $T$ on a [[Hilbert space|Hilbert space]], the singular values $s _ { j } ( T )$ are defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002085.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} s _ { j } ( T ) = \operatorname { inf } \{ \| T - R \| : \operatorname { rank } R \leq j \} , j \geq 0. \end{equation}
  
In [[#References|[a3]]] the following, very deep, theorem was obtained: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002086.png" /> is a Hankel operator, then in (a1) it is sufficient to consider only Hankel operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002087.png" /> of rank at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002088.png" />.
+
In [[#References|[a3]]] the following, very deep, theorem was obtained: If $T$ is a Hankel operator, then in (a1) it is sufficient to consider only Hankel operators $R$ of rank at most $j$.
  
Recall that an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002089.png" /> on a Hilbert space belongs to the Schatten–von Neumann class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002091.png" />, if the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002092.png" /> of its singular values belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002093.png" />. The following theorem was obtained in [[#References|[a16]]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002094.png" /> and in [[#References|[a17]]] and [[#References|[a23]]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002095.png" />: The Hankel operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002096.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002097.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002098.png" /> belongs to the Besov space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002099.png" />.
+
Recall that an operator $T$ on a Hilbert space belongs to the Schatten–von Neumann class $\mathcal{S} _ { p }$, $0 < p < \infty$, if the sequence $\{ s _ { j } ( T ) \} _ { j \geq 0 }$ of its singular values belongs to $\mathbf{l}^{p}$. The following theorem was obtained in [[#References|[a16]]] for $1 \leq p < \infty$ and in [[#References|[a17]]] and [[#References|[a23]]] for $0 < p < 1$: The Hankel operator $H _ { \phi }$ belongs to $\mathcal{S} _ { p }$ if and only if $\mathcal{P} - \phi$ belongs to the Besov space $B _ { p } ^ { 1 / p }$.
  
There are many different equivalent definitions of Besov spaces. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020100.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020101.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020102.png" /> and can be considered as a function analytic in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020103.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020104.png" /> if and only if
+
There are many different equivalent definitions of Besov spaces. Let $\psi = \overline { \mathcal{P} - \phi }$. The function $\psi$ belongs to $H ^ { 2 }$ and can be considered as a function analytic in the unit disc $D$. Then $\mathcal{P} _ { - } \phi \in B _ { p } ^ { 1 / p }$ if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020105.png" /></td> </tr></table>
+
\begin{equation*} \int _ { D } | \psi ^ { ( n ) } ( \zeta ) | ^ { p } ( 1 - | \zeta | ) ^ { n p - 2 } d m _ { 2 } ( \zeta ) < \infty, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020106.png" /> is an integer such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020107.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020108.png" /> stands for planar [[Lebesgue measure|Lebesgue measure]].
+
where $n$ is an integer such that $n > 1 / p$ and $m _ { 2 }$ stands for planar [[Lebesgue measure]].
  
This theorem has many applications, e.g. to rational approximation. For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020109.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020110.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020111.png" /> one can define the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020112.png" /> by
+
This theorem has many applications, e.g. to rational approximation. For a function $\phi$ on $\bf T$ in $\operatorname{BMO}$ one can define the numbers $\rho _ { n } ( \phi )$ by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020113.png" /></td> </tr></table>
+
\begin{equation*} \rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ {  \operatorname{BMO} } : \rho \in \mathcal{R} _ { n } \}, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020114.png" /> is the set of rational functions of degree at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020115.png" /> with poles outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020116.png" />.
+
where $\mathcal{R} _ { n }$ is the set of rational functions of degree at most $n$ with poles outside $\bf T$.
  
The following theorem is true: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020117.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020118.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020119.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020120.png" />.
+
The following theorem is true: Let $\phi \in \operatorname{BMO}$ and $0 < p < \infty$. Then $\{ \rho _ { n } ( \phi ) \} _ { n  \geq 0} \in \text{l} ^ { p }$ if and only if $\phi \in B _ { p } ^ { 1 / p }$.
  
This theorem was obtained in [[#References|[a16]]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020121.png" />, and in [[#References|[a17]]], [[#References|[a15]]], and [[#References|[a23]]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020122.png" />.
+
This theorem was obtained in [[#References|[a16]]] for $1 \leq p < \infty$, and in [[#References|[a17]]], [[#References|[a15]]], and [[#References|[a23]]] for $0 < p < 1$.
  
Among the numerous applications of Hankel operators, heredity results for the non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020123.png" /> of best approximation by analytic functions can be found in [[#References|[a19]]].
+
Among the numerous applications of Hankel operators, heredity results for the non-linear operator $\mathcal{A}$ of best approximation by analytic functions can be found in [[#References|[a19]]].
  
For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020124.png" /> one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020125.png" /> the unique function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020126.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020127.png" />. In [[#References|[a19]]], Hankel operators were used to find three big classes of function spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020128.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020129.png" />. The first class contains the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020130.png" /> and the Besov spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020132.png" />. The second class consists of Banach algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020133.png" /> of functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020134.png" /> such that
+
For a function $\phi \in \operatorname{VMO}$ one denotes by $\mathcal{A} \phi$ the unique function $f \in \operatorname{BMOA} = \operatorname{BMO} \cap H ^ { 2 }$ satisfying $\| \phi - f \| _ { L  ^{\infty} ( \mathbf{T} )} = \| H _ { \phi } \|$. In [[#References|[a19]]], Hankel operators were used to find three big classes of function spaces $X$ such that $\mathcal{A} X \subset X$. The first class contains the space $\operatorname{VMO}$ and the Besov spaces $B _ { p } ^ { 1 / p }$, $0 < p < \infty$. The second class consists of Banach algebras $X$ of functions on $\bf T$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020135.png" /></td> </tr></table>
+
\begin{equation*} f \in X \text{ implies } \bar{f} \in X \text{ and } \mathcal{P}_-f \in X, \end{equation*}
  
the trigonometric polynomials are dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020136.png" />, and the maximal ideal space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020137.png" /> can be identified naturally with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020138.png" />. The space of functions with absolutely converging Fourier series, the Besov classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020139.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020140.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020141.png" />, and many other classical Banach spaces of functions satisfy the above conditions. The third class found in [[#References|[a19]]] include non-separable Banach spaces (e.g., Hölder and Zygmund classes) as well as certain locally convex spaces. Note, however, that there are continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020142.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020143.png" /> is discontinuous.
+
the trigonometric polynomials are dense in $X$, and the maximal ideal space of $X$ can be identified naturally with $\bf T$. The space of functions with absolutely converging Fourier series, the Besov classes $B _ { p } ^ { S }$, $1 \leq p < \infty$, $s > 1 / p$, and many other classical Banach spaces of functions satisfy the above conditions. The third class found in [[#References|[a19]]] include non-separable Banach spaces (e.g., Hölder and Zygmund classes) as well as certain locally convex spaces. Note, however, that there are continuous functions $\phi$ for which $\mathcal{A} \phi$ is discontinuous.
  
 
Hankel operators were also used in [[#References|[a19]]] to obtain many results on regularity conditions for stationary random processes (cf. also [[Stationary stochastic process|Stationary stochastic process]]).
 
Hankel operators were also used in [[#References|[a19]]] to obtain many results on regularity conditions for stationary random processes (cf. also [[Stationary stochastic process|Stationary stochastic process]]).
  
Hankel operators are very important in systems theory and control theory (see [[#References|[a5]]] and also [[H^infinity-control-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020144.png" /> control theory]]).
+
Hankel operators are very important in systems theory and control theory (see [[#References|[a5]]] and also [[H^infinity-control-theory|$H ^ { \infty }$ control theory]]).
  
Another realization of Hankel operators, as operators on the same Hilbert space, makes it possible to study their spectral properties. For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020145.png" /> one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020146.png" /> the Hankel operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020147.png" /> with Hankel matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020148.png" />. It is a very difficult problem to describe the spectral properties of such Hankel operators. Known results include the following ones. S. Power has described the essential spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020149.png" /> for piecewise-continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020150.png" /> (see [[#References|[a22]]]). An example of a non-zero quasi-nilpotent Hankel operator was constructed in [[#References|[a12]]].
+
Another realization of Hankel operators, as operators on the same Hilbert space, makes it possible to study their spectral properties. For a function $\phi \in L ^ { \infty }$ one denotes by $\Gamma _ { \phi }$ the Hankel operator on $\text{l} ^ { 2 }$ with Hankel matrix $\{ \widehat { \phi } ( j + k ) \}_{ j , k \geq 0}$. It is a very difficult problem to describe the spectral properties of such Hankel operators. Known results include the following ones. S. Power has described the essential spectrum of $\Gamma _ { \phi }$ for piecewise-continuous functions $\phi$ (see [[#References|[a22]]]). An example of a non-zero quasi-nilpotent Hankel operator was constructed in [[#References|[a12]]].
  
In [[#References|[a13]]], the problem of the spectral characterization of self-adjoint Hankel operators was solved. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020151.png" /> be a [[Self-adjoint operator|self-adjoint operator]] on a Hilbert space. One can associate with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020152.png" /> its scalar spectral measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020153.png" /> and its spectral multiplicity function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020154.png" /> (cf. also [[Spectral function|Spectral function]]). The following assertion holds: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020155.png" /> is unitarily equivalent to a Hankel operator if and only if the following conditions are satisfied:
+
In [[#References|[a13]]], the problem of the spectral characterization of self-adjoint Hankel operators was solved. Let $A$ be a [[Self-adjoint operator|self-adjoint operator]] on a Hilbert space. One can associate with $A$ its scalar spectral measure $\mu$ and its spectral multiplicity function $\nu$ (cf. also [[Spectral function|Spectral function]]). The following assertion holds: $A$ is unitarily equivalent to a Hankel operator if and only if the following conditions are satisfied:
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020156.png" /> is non-invertible;
+
i) $A$ is non-invertible;
  
ii) the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020157.png" /> is either trivial or infinite-dimensional;
+
ii) the kernel of $A$ is either trivial or infinite-dimensional;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020158.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020159.png" />-almost everywhere and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020160.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020161.png" />-almost everywhere, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020162.png" /> is the singular component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020163.png" />.
+
iii) $| \nu ( t ) - \nu ( - t ) | \leq 2$ $\mu$-almost everywhere and $| \nu ( t ) - \nu ( - t ) | \leq 1$ $\mu _ { \text{s} }$-almost everywhere, where $\mu _ { \text{s} }$ is the singular component of $\mu$.
  
 
The proof of this result is based on linear dynamical systems.
 
The proof of this result is based on linear dynamical systems.
Line 82: Line 90:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "On infinite Hankel matrices and generalized problems of Carathéodory–Fejér and F. Riesz"  ''Funct. Anal. Appl.'' , '''2'''  (1968)  pp. 1–18  ''Funktsional. Anal. Prilozh.'' , '''2''' :  1  (1968)  pp. 1–19</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "On infinite Hankel matrices and generalized problems of Carathéodory–Fejér and I. Schur"  ''Funct. Anal. Appl.'' , '''2'''  (1968)  pp. 269–281  ''Funktsional. Anal. i Prilozh.'' , '''2''' :  2  (1968)  pp. 1–17</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem"  ''Math. USSR Sb.'' , '''15'''  (1971)  pp. 31–73  ''Mat. Sb.'' , '''86'''  (1971)  pp. 34–75</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "Infinite Hankel block matrices and some related continuation problems"  ''Izv. Akad. Nauk Armyan. SSR Ser. Mat.'' , '''6'''  (1971)  pp. 87–112</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.A. Francis,  "A course in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020164.png" /> control theory" , ''Lecture Notes Control and Information Sci.'' , '''88''' , Springer  (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  J.B. Garnett,  "Bounded analytic functions" , Acad. Press  (1981)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  H. Hamburger,  "Über eine Erweiterung des Stieltiesschen Momentproblems"  ''Math. Ann.'' , '''81'''  (1920/1)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  H. Hankel,  "Ueber eine besondre Classe der symmetrishchen Determinanten"  ''(Leipziger) Diss. Göttingen''  (1861)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  P. Hartman,  "On completely continuous Hankel matrices"  ''Proc. Amer. Math. Soc.'' , '''9'''  (1958)  pp. 862–866</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  S. Khavinson,  "On some extremal problems of the theory of analytic functions"  ''Transl. Amer. Math. Soc.'' , '''32''' :  2  (1963)  pp. 139–154  ''Uchen. Zap. Mosk. Univ. Mat.'' , '''144''' :  4  (1951)  pp. 133–143</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  L. Kronecker,  "Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen"  ''Monatsber. K. Preuss. Akad. Wiss. Berlin''  (1881)  pp. 535–600</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  A.V. Megretskii,  "A quasinilpotent Hankel operator"  ''Leningrad Math. J.'' , '''2'''  (1991)  pp. 879–889</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  A.V. Megretskii,  V.V. Peller,  S.R. Treil,  "The inverse spectral problem for self-adjoint Hankel operators"  ''Acta Math.'' , '''174'''  (1995)  pp. 241–309</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  Z. Nehari,  "On bounded bilinear forms"  ''Ann. of Math.'' , '''65'''  (1957)  pp. 153–162</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  A.A. Pekarskii,  "Classes of analytic functions defined by best rational approximations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020165.png" />"  ''Math. USSR Sb.'' , '''55'''  (1986)  pp. 1–18  ''Mat. Sb.'' , '''127'''  (1985)  pp. 3–20</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  V.V. Peller,  "Hankel operators of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020166.png" /> and applications (rational approximation, Gaussian processes, the majorization problem for operators)"  ''Math. USSR Sb.'' , '''41'''  (1982)  pp. 443–479  ''Mat Sb.'' , '''113'''  (1980)  pp. 538–581</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  V.V. Peller,  "A description of Hankel operators of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020167.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020168.png" />, investigation of the rate of rational approximation and other applications"  ''Math. USSR Sb.'' , '''50'''  (1985)  pp. 465–494  ''Mat. Sb.'' , '''122'''  (1983)  pp. 481–510</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  V.V. Peller,  "An excursion into the theory of Hankel operators" , ''Holomorphic Function Spaces Book. Proc. MSRI Sem. Fall 1995''  (1995)</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  V.V. Peller,  S.V. Khrushchev,  "Hankel operators, best approximation and stationary Gaussian processes"  ''Russian Math. Surveys'' , '''37''' :  1  (1982)  pp. 61–144  ''Uspekhi Mat. Nauk'' , '''37''' :  1  (1982)  pp. 53–124</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  V.V. Peller,  N.J. Young,  "Superoptimal analytic approximations of matrix functions"  ''J. Funct. Anal.'' , '''120'''  (1994)  pp. 300–343</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  V.V. Peller,  N.J. Young,  "Superoptimal singular values and indices of matrix functions"  ''Integral Eq. Operator Th.'' , '''20'''  (1994)  pp. 35–363</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top">  S. Power,  "Hankel operators on Hilbert space" , Pitman  (1982)</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top">  S. Semmes,  "Trace ideal criteria for Hankel operators and applications to Besov classes"  ''Integral Eq. Operator Th.'' , '''7'''  (1984)  pp. 241–281</TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top">  S.R. Treil,  "On superoptimal approximation by analytic and meromorphic matrix-valued functions"  ''J. Funct. Anal.'' , '''131'''  (1995)  pp. 243–255</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "On infinite Hankel matrices and generalized problems of Carathéodory–Fejér and F. Riesz"  ''Funct. Anal. Appl.'' , '''2'''  (1968)  pp. 1–18  ''Funktsional. Anal. Prilozh.'' , '''2''' :  1  (1968)  pp. 1–19</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "On infinite Hankel matrices and generalized problems of Carathéodory–Fejér and I. Schur"  ''Funct. Anal. Appl.'' , '''2'''  (1968)  pp. 269–281  ''Funktsional. Anal. i Prilozh.'' , '''2''' :  2  (1968)  pp. 1–17</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem"  ''Math. USSR Sb.'' , '''15'''  (1971)  pp. 31–73  ''Mat. Sb.'' , '''86'''  (1971)  pp. 34–75</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  V.M. Adamyan,  D.Z. Arov,  M.G. Krein,  "Infinite Hankel block matrices and some related continuation problems"  ''Izv. Akad. Nauk Armyan. SSR Ser. Mat.'' , '''6'''  (1971)  pp. 87–112</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  B.A. Francis,  "A course in $H ^ { \infty }$ control theory" , ''Lecture Notes Control and Information Sci.'' , '''88''' , Springer  (1986)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  J.B. Garnett,  "Bounded analytic functions" , Acad. Press  (1981)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  H. Hamburger,  "Über eine Erweiterung des Stieltiesschen Momentproblems"  ''Math. Ann.'' , '''81'''  (1920/1)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  H. Hankel,  "Ueber eine besondre Classe der symmetrishchen Determinanten"  ''(Leipziger) Diss. Göttingen''  (1861)</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  P. Hartman,  "On completely continuous Hankel matrices"  ''Proc. Amer. Math. Soc.'' , '''9'''  (1958)  pp. 862–866</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  S. Khavinson,  "On some extremal problems of the theory of analytic functions"  ''Transl. Amer. Math. Soc.'' , '''32''' :  2  (1963)  pp. 139–154  ''Uchen. Zap. Mosk. Univ. Mat.'' , '''144''' :  4  (1951)  pp. 133–143</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  L. Kronecker,  "Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen"  ''Monatsber. K. Preuss. Akad. Wiss. Berlin''  (1881)  pp. 535–600</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  A.V. Megretskii,  "A quasinilpotent Hankel operator"  ''Leningrad Math. J.'' , '''2'''  (1991)  pp. 879–889</td></tr><tr><td valign="top">[a13]</td> <td valign="top">  A.V. Megretskii,  V.V. Peller,  S.R. Treil,  "The inverse spectral problem for self-adjoint Hankel operators"  ''Acta Math.'' , '''174'''  (1995)  pp. 241–309</td></tr><tr><td valign="top">[a14]</td> <td valign="top">  Z. Nehari,  "On bounded bilinear forms"  ''Ann. of Math.'' , '''65'''  (1957)  pp. 153–162</td></tr><tr><td valign="top">[a15]</td> <td valign="top">  A.A. Pekarskii,  "Classes of analytic functions defined by best rational approximations in $H _ { p }$" ''Math. USSR Sb.'' , '''55'''  (1986)  pp. 1–18  ''Mat. Sb.'' , '''127'''  (1985)  pp. 3–20</td></tr><tr><td valign="top">[a16]</td> <td valign="top">  V.V. Peller,  "Hankel operators of class $\mathfrak{S}_p$ and applications (rational approximation, Gaussian processes, the majorization problem for operators)"  ''Math. USSR Sb.'' , '''41'''  (1982)  pp. 443–479  ''Mat Sb.'' , '''113'''  (1980)  pp. 538–581</td></tr><tr><td valign="top">[a17]</td> <td valign="top">  V.V. Peller,  "A description of Hankel operators of class $\mathfrak{S}_p$ for $p > 0$, investigation of the rate of rational approximation and other applications"  ''Math. USSR Sb.'' , '''50'''  (1985)  pp. 465–494  ''Mat. Sb.'' , '''122'''  (1983)  pp. 481–510</td></tr><tr><td valign="top">[a18]</td> <td valign="top">  V.V. Peller,  "An excursion into the theory of Hankel operators" , ''Holomorphic Function Spaces Book. Proc. MSRI Sem. Fall 1995''  (1995)</td></tr><tr><td valign="top">[a19]</td> <td valign="top">  V.V. Peller,  S.V. Khrushchev,  "Hankel operators, best approximation and stationary Gaussian processes"  ''Russian Math. Surveys'' , '''37''' :  1  (1982)  pp. 61–144  ''Uspekhi Mat. Nauk'' , '''37''' :  1  (1982)  pp. 53–124</td></tr><tr><td valign="top">[a20]</td> <td valign="top">  V.V. Peller,  N.J. Young,  "Superoptimal analytic approximations of matrix functions"  ''J. Funct. Anal.'' , '''120'''  (1994)  pp. 300–343</td></tr><tr><td valign="top">[a21]</td> <td valign="top">  V.V. Peller,  N.J. Young,  "Superoptimal singular values and indices of matrix functions"  ''Integral Eq. Operator Th.'' , '''20'''  (1994)  pp. 35–363</td></tr><tr><td valign="top">[a22]</td> <td valign="top">  S. Power,  "Hankel operators on Hilbert space" , Pitman  (1982)</td></tr><tr><td valign="top">[a23]</td> <td valign="top">  S. Semmes,  "Trace ideal criteria for Hankel operators and applications to Besov classes"  ''Integral Eq. Operator Th.'' , '''7'''  (1984)  pp. 241–281</td></tr><tr><td valign="top">[a24]</td> <td valign="top">  S.R. Treil,  "On superoptimal approximation by analytic and meromorphic matrix-valued functions"  ''J. Funct. Anal.'' , '''131'''  (1995)  pp. 243–255</td></tr>
 +
</table>

Latest revision as of 00:48, 15 February 2024

The Hankel operators form a class of operators which is one of the most important classes of operators in function theory; it has many applications in different fields of mathematics and applied mathematics.

A Hankel operator can be defined as an operator whose matrix has the form $( \alpha _ { j + k} ) _ { j , k \geq 0}$ (such matrices are called Hankel matrices, cf. also Padé approximation). Finite matrices whose entries depend only on the sum of the coordinates were studied first by H. Hankel [a8]. One of the first results on infinite Hankel matrices was obtained by L. Kronecker [a11], who described the finite-rank Hankel matrices. Hankel operators played an important role in moment problems [a8] as well as in other classical problems of analysis.

The study of Hankel operators on the Hardy class $H ^ { 2 }$ was started by Z. Nehari [a14] and P. Hartman [a9] (cf. also Hardy classes). The following boundedness criterion was proved in [a14]: A matrix $( \alpha _ { j + k} ) _ { j , k \geq 0}$ determines a bounded operator on $\text{l} ^ { 2 }$ if and only if there exists a bounded function $\phi$ on the unit circle $\bf T$ such that $\widehat { \phi } ( j ) = \alpha_j$, $j \geq 0$, where $\{ \hat { \phi } ( j ) \} _ { j \geq 0 }$ is the sequence of Fourier coefficients of $\phi$ (cf. also Fourier series). Moreover, the norm of the operator with matrix $( \alpha _ { j + k} ) _ { j , k \geq 0}$ is equal to

\begin{equation*} \operatorname { inf } \left\{ \| \phi \| _ { \infty } : \phi \in L ^ { \infty } , \widehat { \phi } ( j ) = \alpha _ { j } \text { for } j \geq 0 \right\}. \end{equation*}

The following compactness criterion was obtained in [a9]: The operator with matrix $( \alpha _ { j + k} ) _ { j , k \geq 0}$ is compact (cf. also Compact operator) if and only if $\alpha_{ j} = \widehat { \phi } ( j )$, $j \geq 0$, for some continuous function $\phi$ on $\bf T$.

Later it became possible to state these boundedness and compactness criteria in terms of the spaces $\operatorname{BMO}$ and $\operatorname{VMO}$. The space $\operatorname{BMO}$ of functions of bounded mean oscillation consists of functions $f \in L ^ { 1 } ( \mathbf{T} )$ such that

\begin{equation*} \operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty, \end{equation*}

where the supremum is taken over all intervals $I$ of $\bf T$, $| l | = m ( l )$ is the Lebesgue measure of $I$, and $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$. The space $\operatorname{VMO}$ of functions of vanishing mean oscillation consists of functions $f \in L ^ { 1 } ( \mathbf{T} )$ such that

\begin{equation*} \operatorname { lim } _ { | I | \rightarrow 0 } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m = 0. \end{equation*}

Cf. also $\operatorname{BMO}$-space; $\operatorname{VMO}$-space.

A combination of the Nehari and Fefferman theorems (see [a6]) gives the following boundedness criterion: The matrix $( \alpha _ { j + k} ) _ { j , k \geq 0}$ determines a bounded operator on $\text{l} ^ { 2 }$ if and only if the function $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ on $\bf T$ belongs to $\operatorname{BMO}$. Similarly, the matrix $( \alpha _ { j + k} ) _ { j , k \geq 0}$ determines a compact operator if and only if $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j } \in \operatorname{VMO}$.

It is convenient to use different realizations of Hankel operators. The following realization is very important in function theory. Given a function $\phi \in L ^ { \infty }$, one defines the Hankel operator $H _ { \phi } : H ^ { 2 } \rightarrow H _ { - } ^ { 2 }$ by $H _ { \phi } f = \mathcal{P} _ { - } \phi f$. Here, $H_- ^ { 2 } = L ^ { 2 } \ominus H ^ { 2 }$ and $\mathcal{P}_ {-}$ is the orthogonal projection onto $H_{-} ^ { 2 }$. A function $\phi$ is called a symbol of $H _ { \phi }$ (the operator $H _ { \phi }$ has infinitely many different symbols: $H _ { \phi } = H _ { \phi + \psi }$ for $\psi \in H ^ { \infty }$). The operator $H _ { \phi }$ has Hankel matrix $( \hat { \phi } ( - j - k - 1 ) )_{ j > 0 , k \geq 0}$ in the orthonormal basis $\{ z ^ { k } \} _ { k \geq 0 }$ of $H ^ { 2 }$ and the orthonormal basis $\{ \overline{z} \square ^ { j } \}_{j > 0}$ of $H_{-} ^ { 2 }$. By Hartman's theorem above, $H _ { \phi }$ is compact if and only if $\phi \in H ^ { \infty } + C$ where $H ^ { \infty } + C$ is the closed subalgebra of $L^{\infty}$ consisting of the functions of the form $f + g$ with $f \in H ^ { \infty }$ and $g$ a continuous function on $\bf T$.

For $\phi \in L ^ { \infty }$, there exists a function $f \in H ^ { \infty }$ such that $\| \phi - f \| _ { L^\infty } = \| H _ { \phi } \|$; it is called a best approximation of $\phi$ by analytic functions in the $L^{\infty}$-norm. In general, such a function $f$ is not unique (see [a10]). However, if the essential norm (i.e., the distance to the set of compact operators) of $H _ { \phi }$ is less than its norm, then there is a unique best approximation $\phi$ and the function $\phi - f$ has constant modulus [a1]. Let $\rho \geq \| H _ { \phi } \|$. In [a2] it is shown that if the set $\{ f \in H ^ { \infty } : \| \phi - f \| _ { L } \infty \leq \rho \}$ contains at least two different functions, then this set contains a function of constant modulus $\rho$; a formula which parameterizes all functions in this set has also been obtained [a2].

A description of the Hankel operators of finite rank was given in [a11]: The Hankel operator $H _ { \phi }$ has finite rank if and only if $\mathcal{P} - \phi$ is a rational function. Moreover, $\operatorname{rank} H _ { \phi } = \operatorname { deg } {\cal P}_{-} \phi$.

Recall that for a bounded linear operator $T$ on a Hilbert space, the singular values $s _ { j } ( T )$ are defined by

\begin{equation} \tag{a1} s _ { j } ( T ) = \operatorname { inf } \{ \| T - R \| : \operatorname { rank } R \leq j \} , j \geq 0. \end{equation}

In [a3] the following, very deep, theorem was obtained: If $T$ is a Hankel operator, then in (a1) it is sufficient to consider only Hankel operators $R$ of rank at most $j$.

Recall that an operator $T$ on a Hilbert space belongs to the Schatten–von Neumann class $\mathcal{S} _ { p }$, $0 < p < \infty$, if the sequence $\{ s _ { j } ( T ) \} _ { j \geq 0 }$ of its singular values belongs to $\mathbf{l}^{p}$. The following theorem was obtained in [a16] for $1 \leq p < \infty$ and in [a17] and [a23] for $0 < p < 1$: The Hankel operator $H _ { \phi }$ belongs to $\mathcal{S} _ { p }$ if and only if $\mathcal{P} - \phi$ belongs to the Besov space $B _ { p } ^ { 1 / p }$.

There are many different equivalent definitions of Besov spaces. Let $\psi = \overline { \mathcal{P} - \phi }$. The function $\psi$ belongs to $H ^ { 2 }$ and can be considered as a function analytic in the unit disc $D$. Then $\mathcal{P} _ { - } \phi \in B _ { p } ^ { 1 / p }$ if and only if

\begin{equation*} \int _ { D } | \psi ^ { ( n ) } ( \zeta ) | ^ { p } ( 1 - | \zeta | ) ^ { n p - 2 } d m _ { 2 } ( \zeta ) < \infty, \end{equation*}

where $n$ is an integer such that $n > 1 / p$ and $m _ { 2 }$ stands for planar Lebesgue measure.

This theorem has many applications, e.g. to rational approximation. For a function $\phi$ on $\bf T$ in $\operatorname{BMO}$ one can define the numbers $\rho _ { n } ( \phi )$ by

\begin{equation*} \rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ { \operatorname{BMO} } : \rho \in \mathcal{R} _ { n } \}, \end{equation*}

where $\mathcal{R} _ { n }$ is the set of rational functions of degree at most $n$ with poles outside $\bf T$.

The following theorem is true: Let $\phi \in \operatorname{BMO}$ and $0 < p < \infty$. Then $\{ \rho _ { n } ( \phi ) \} _ { n \geq 0} \in \text{l} ^ { p }$ if and only if $\phi \in B _ { p } ^ { 1 / p }$.

This theorem was obtained in [a16] for $1 \leq p < \infty$, and in [a17], [a15], and [a23] for $0 < p < 1$.

Among the numerous applications of Hankel operators, heredity results for the non-linear operator $\mathcal{A}$ of best approximation by analytic functions can be found in [a19].

For a function $\phi \in \operatorname{VMO}$ one denotes by $\mathcal{A} \phi$ the unique function $f \in \operatorname{BMOA} = \operatorname{BMO} \cap H ^ { 2 }$ satisfying $\| \phi - f \| _ { L ^{\infty} ( \mathbf{T} )} = \| H _ { \phi } \|$. In [a19], Hankel operators were used to find three big classes of function spaces $X$ such that $\mathcal{A} X \subset X$. The first class contains the space $\operatorname{VMO}$ and the Besov spaces $B _ { p } ^ { 1 / p }$, $0 < p < \infty$. The second class consists of Banach algebras $X$ of functions on $\bf T$ such that

\begin{equation*} f \in X \text{ implies } \bar{f} \in X \text{ and } \mathcal{P}_-f \in X, \end{equation*}

the trigonometric polynomials are dense in $X$, and the maximal ideal space of $X$ can be identified naturally with $\bf T$. The space of functions with absolutely converging Fourier series, the Besov classes $B _ { p } ^ { S }$, $1 \leq p < \infty$, $s > 1 / p$, and many other classical Banach spaces of functions satisfy the above conditions. The third class found in [a19] include non-separable Banach spaces (e.g., Hölder and Zygmund classes) as well as certain locally convex spaces. Note, however, that there are continuous functions $\phi$ for which $\mathcal{A} \phi$ is discontinuous.

Hankel operators were also used in [a19] to obtain many results on regularity conditions for stationary random processes (cf. also Stationary stochastic process).

Hankel operators are very important in systems theory and control theory (see [a5] and also $H ^ { \infty }$ control theory).

Another realization of Hankel operators, as operators on the same Hilbert space, makes it possible to study their spectral properties. For a function $\phi \in L ^ { \infty }$ one denotes by $\Gamma _ { \phi }$ the Hankel operator on $\text{l} ^ { 2 }$ with Hankel matrix $\{ \widehat { \phi } ( j + k ) \}_{ j , k \geq 0}$. It is a very difficult problem to describe the spectral properties of such Hankel operators. Known results include the following ones. S. Power has described the essential spectrum of $\Gamma _ { \phi }$ for piecewise-continuous functions $\phi$ (see [a22]). An example of a non-zero quasi-nilpotent Hankel operator was constructed in [a12].

In [a13], the problem of the spectral characterization of self-adjoint Hankel operators was solved. Let $A$ be a self-adjoint operator on a Hilbert space. One can associate with $A$ its scalar spectral measure $\mu$ and its spectral multiplicity function $\nu$ (cf. also Spectral function). The following assertion holds: $A$ is unitarily equivalent to a Hankel operator if and only if the following conditions are satisfied:

i) $A$ is non-invertible;

ii) the kernel of $A$ is either trivial or infinite-dimensional;

iii) $| \nu ( t ) - \nu ( - t ) | \leq 2$ $\mu$-almost everywhere and $| \nu ( t ) - \nu ( - t ) | \leq 1$ $\mu _ { \text{s} }$-almost everywhere, where $\mu _ { \text{s} }$ is the singular component of $\mu$.

The proof of this result is based on linear dynamical systems.

In applications (such as to prediction theory, control theory, or systems theory) it is important to consider Hankel operators with matrix-valued symbols; see [a4] for the basic properties of such operators. Hankel operators with matrix symbols were used in [a20], [a21] to study approximation problems for matrix-valued functions (so-called superoptimal approximations). See also [a24] for another approach to this problem.

The recent (1998) survey [a18] gives more detailed information on Hankel operators.

Finally, there are many results on analogues of Hankel operators on the unit ball, the poly-disc and many other domains.

References

[a1] V.M. Adamyan, D.Z. Arov, M.G. Krein, "On infinite Hankel matrices and generalized problems of Carathéodory–Fejér and F. Riesz" Funct. Anal. Appl. , 2 (1968) pp. 1–18 Funktsional. Anal. Prilozh. , 2 : 1 (1968) pp. 1–19
[a2] V.M. Adamyan, D.Z. Arov, M.G. Krein, "On infinite Hankel matrices and generalized problems of Carathéodory–Fejér and I. Schur" Funct. Anal. Appl. , 2 (1968) pp. 269–281 Funktsional. Anal. i Prilozh. , 2 : 2 (1968) pp. 1–17
[a3] V.M. Adamyan, D.Z. Arov, M.G. Krein, "Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem" Math. USSR Sb. , 15 (1971) pp. 31–73 Mat. Sb. , 86 (1971) pp. 34–75
[a4] V.M. Adamyan, D.Z. Arov, M.G. Krein, "Infinite Hankel block matrices and some related continuation problems" Izv. Akad. Nauk Armyan. SSR Ser. Mat. , 6 (1971) pp. 87–112
[a5] B.A. Francis, "A course in $H ^ { \infty }$ control theory" , Lecture Notes Control and Information Sci. , 88 , Springer (1986)
[a6] J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981)
[a7] H. Hamburger, "Über eine Erweiterung des Stieltiesschen Momentproblems" Math. Ann. , 81 (1920/1)
[a8] H. Hankel, "Ueber eine besondre Classe der symmetrishchen Determinanten" (Leipziger) Diss. Göttingen (1861)
[a9] P. Hartman, "On completely continuous Hankel matrices" Proc. Amer. Math. Soc. , 9 (1958) pp. 862–866
[a10] S. Khavinson, "On some extremal problems of the theory of analytic functions" Transl. Amer. Math. Soc. , 32 : 2 (1963) pp. 139–154 Uchen. Zap. Mosk. Univ. Mat. , 144 : 4 (1951) pp. 133–143
[a11] L. Kronecker, "Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen" Monatsber. K. Preuss. Akad. Wiss. Berlin (1881) pp. 535–600
[a12] A.V. Megretskii, "A quasinilpotent Hankel operator" Leningrad Math. J. , 2 (1991) pp. 879–889
[a13] A.V. Megretskii, V.V. Peller, S.R. Treil, "The inverse spectral problem for self-adjoint Hankel operators" Acta Math. , 174 (1995) pp. 241–309
[a14] Z. Nehari, "On bounded bilinear forms" Ann. of Math. , 65 (1957) pp. 153–162
[a15] A.A. Pekarskii, "Classes of analytic functions defined by best rational approximations in $H _ { p }$" Math. USSR Sb. , 55 (1986) pp. 1–18 Mat. Sb. , 127 (1985) pp. 3–20
[a16] V.V. Peller, "Hankel operators of class $\mathfrak{S}_p$ and applications (rational approximation, Gaussian processes, the majorization problem for operators)" Math. USSR Sb. , 41 (1982) pp. 443–479 Mat Sb. , 113 (1980) pp. 538–581
[a17] V.V. Peller, "A description of Hankel operators of class $\mathfrak{S}_p$ for $p > 0$, investigation of the rate of rational approximation and other applications" Math. USSR Sb. , 50 (1985) pp. 465–494 Mat. Sb. , 122 (1983) pp. 481–510
[a18] V.V. Peller, "An excursion into the theory of Hankel operators" , Holomorphic Function Spaces Book. Proc. MSRI Sem. Fall 1995 (1995)
[a19] V.V. Peller, S.V. Khrushchev, "Hankel operators, best approximation and stationary Gaussian processes" Russian Math. Surveys , 37 : 1 (1982) pp. 61–144 Uspekhi Mat. Nauk , 37 : 1 (1982) pp. 53–124
[a20] V.V. Peller, N.J. Young, "Superoptimal analytic approximations of matrix functions" J. Funct. Anal. , 120 (1994) pp. 300–343
[a21] V.V. Peller, N.J. Young, "Superoptimal singular values and indices of matrix functions" Integral Eq. Operator Th. , 20 (1994) pp. 35–363
[a22] S. Power, "Hankel operators on Hilbert space" , Pitman (1982)
[a23] S. Semmes, "Trace ideal criteria for Hankel operators and applications to Besov classes" Integral Eq. Operator Th. , 7 (1984) pp. 241–281
[a24] S.R. Treil, "On superoptimal approximation by analytic and meromorphic matrix-valued functions" J. Funct. Anal. , 131 (1995) pp. 243–255
How to Cite This Entry:
Hankel operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hankel_operator&oldid=17278
This article was adapted from an original article by V.V. Peller (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article