Namespaces
Variants
Actions

Groupoid

From Encyclopedia of Mathematics
Revision as of 19:34, 13 December 2015 by Boris Tsirelson (talk | contribs) (see talk)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


for the general algebraic structure, see Magma

A term introduced by H. Brandt [a1]. A groupoid may conveniently be defined as a (small) category in which every morphism is an isomorphism; equivalently, it is a set $G$ equipped with a unary operation $g\mapsto g^{-1}$ and a partial binary operation $(g,h)\mapsto gh$ satisfying

1) $gg^{-1}$ and $g^{-1}g$ are always defined;

2) $gh$ is defined if and only if $g^{-1}g=hh^{-1}$;

3) if $gh$ and $hk$ are defined, then $(gh)k$ and $g(hk)$ are defined and equal;

4) each of $g^{-1}gh$, $hg^{-1}g$, $gg^{-1}h$, and $hgg^{-1}$ is equal to $h$ if it is defined.

Groupoids, as a special case of categories, play an important role in many areas of application of category theory, including algebra [a2], differential geometry [a3] and topology [a4], [a5].

References

[a1] H. Brandt, "Ueber eine Verallgemeinerung des Gruppenbegriffes" Math. Ann. , 96 (1926) pp. 360–366
[a2] P.J. Higgins, "Categories and groupoids" , v. Nostrand-Reinhold (1971)
[a3] Ch. Ehresmann, "Structures locales et catégories ordonnés" , Oeuvres complètes et commentées , Supplément aux Cahiers de Topologie et Géométrie Différentielle Catégoriques , Partie II (1980)
[a4] R. Brown, "Elements of modern topology" , McGraw-Hill (1968)
[a5] R. Brown, "From groups to groupoids: a brief survey" Bull. London Math. Soc. , 19 (1987) pp. 113–134
How to Cite This Entry:
Groupoid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Groupoid&oldid=39751
This article was adapted from an original article by V.D. Belousov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article