Namespaces
Variants
Actions

Green equivalence relations

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20M10 [MSN][ZBL]

on a semi-group

Binary relations $\mathcal L$, $\mathcal R$, $\mathcal J$, $\mathcal D$, $\mathcal H$ defined as follows: $x\mathcal Ly$ means that $x$ and $y$ generate identical left principal ideals (cf. Principal ideal); $x\mathcal Ry$ and $x\mathcal Jy$ have a similar meaning after "left" has been replaced by "right" and "two-sided", respectively; $\mathcal D=\mathcal{L}\lor\mathcal R$ (union in the lattice of equivalence relations); $\mathcal H=\mathcal L\cap\mathcal R$. The relations $\mathcal L$ and $\mathcal R$ are commutative in the sense of multiplication of binary relations, so that $\mathcal D$ coincides with their product. The relation $\mathcal L$ is a right congruence, i.e. is stable from the right: $a\mathcal Lb$ implies $ac\mathcal Lbc$ for all $c$; the relation $\mathcal R$ is a left congruence (stable from the left). An $\mathcal L$-class and an $\mathcal R$-class intersect if and only if they are contained in the same $\mathcal D$-class. All $\mathcal H$-classes in the same $\mathcal R$-class are equipotent. If a $\mathcal D$-class $D$ contains a regular element, then all elements in $D$ are regular and $D$ contains with some given element all elements inverse to it; such a $\mathcal D$-class is said to be regular. In a regular $\mathcal D$-class each $\mathcal L$-class and each $\mathcal R$-class contains an idempotent. Let $H$ be an arbitrary $\mathcal H$-class; then either $H$ is a group (which is the case if and only if $H$ is a maximal subgroup of the given semi-group), or else $H\cap H^2=\emptyset$. All group $\mathcal H$-classes of the same $\mathcal D$-class are isomorphic groups. In the general case $\mathcal D\neq\mathcal J$, but if, for example, some power of each element of the semi-group $S$ belongs to a subgroup (in particular, if $S$ is a periodic semi-group), then $\mathcal D=\mathcal J$. The inclusion of principal left ideals defines in a natural manner a partial order relation on the set of $\mathcal L$-classes; similar considerations are valid for $\mathcal R$-classes and $\mathcal J$-classes. These relations were introduced by J. Green [1].

References

[1] J. Green, "On the structure of semigroups" Ann. of Math. , 54 (1951) pp. 163–172 DOI 10.2307/1969317 Zbl 0043.25601
[2] E.S. Lyapin, "Semigroups" , Amer. Math. Soc. (1974) (Translated from Russian) Zbl 0303.20039
[3] A.H. Clifford, G.B. Preston, "Algebraic theory of semi-groups" , 1–2 , Amer. Math. Soc. (1961–1967) Zbl 0111.03403 Zbl 0178.01203
[4] M.A. Arbib (ed.) Algebraic theory of machines, languages and semigroups Academic Press (1968) ISBN 0120590506 Zbl 0181.01501 Buslenko, N.P. (ed.), Moscow (1975) (In Russian; translated from English) Zbl 0358.94001
[5] K.H. Hofmann, P.S. Mostert, "Elements of compact semigroups" , C.E. Merrill (1966) Zbl 0161.01901
How to Cite This Entry:
Green equivalence relations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Green_equivalence_relations&oldid=54699
This article was adapted from an original article by L.N. Shevrin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article