Namespaces
Variants
Actions

Difference between revisions of "Grassmann manifold"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
g0450301.png
 +
$#A+1 = 79 n = 0
 +
$#C+1 = 79 : ~/encyclopedia/old_files/data/G045/G.0405030 Grassmann manifold,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
'' Grassmannian''
 
'' Grassmannian''
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450301.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450302.png" />, of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450303.png" />-dimensional subspaces in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450304.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450305.png" /> over a skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450306.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450307.png" /> is a field, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450308.png" /> can be imbedded in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g0450309.png" />-dimensional projective space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503010.png" /> as a compact algebraic variety with the aid of Grassmann coordinates (cf. [[Exterior algebra|Exterior algebra]]). In the study of the geometrical properties of a Grassmann manifold an important role is played by the so-called Schubert varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503012.png" />, which are defined as follows. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503013.png" /> is a [[Flag|flag]] of subspaces, i.e. a chain of subspaces such that also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503014.png" />, then
+
The set $  G _ {n, m }  ( k) $,  
 +
$  m \leq  n $,  
 +
of all $  m $-
 +
dimensional subspaces in an $  n $-
 +
dimensional vector space $  V $
 +
over a skew-field $  k $.  
 +
If $  k $
 +
is a field, then $  G _ {n, m }  ( k) $
 +
can be imbedded in a $  ( _ { m }  ^ {mn} ) - 1 $-
 +
dimensional projective space over $  k $
 +
as a compact algebraic variety with the aid of Grassmann coordinates (cf. [[Exterior algebra|Exterior algebra]]). In the study of the geometrical properties of a Grassmann manifold an important role is played by the so-called Schubert varieties $  S _ {a _ {0}  \dots a _ {m} } $,  
 +
$  0 \leq  a _ {0} < \dots < a _ {m} \leq  n $,  
 +
which are defined as follows. If $  0 = V _ {0} \subset  V _ {1} \subset  \dots \subset  V _ {n} = V $
 +
is a [[Flag|flag]] of subspaces, i.e. a chain of subspaces such that also $  \mathop{\rm dim}  V _ {k} = k $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503015.png" /></td> </tr></table>
+
$$
 +
S _ {a _ {0}  \dots a _ {m} }  = \
 +
\{ {W \in G _ {n, m }  ( k) } : {
 +
\mathop{\rm dim}  ( W \cap V _ {a _ {r}  } ) \geq  r,\
 +
0 \leq  r \leq  m } \}
 +
.
 +
$$
  
Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503016.png" />-dimensional algebraic subvariety in a Grassmann manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503017.png" /> is equivalent to a unique integer combination of the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503019.png" /> (see [[#References|[1]]]).
+
Any $  \rho $-
 +
dimensional algebraic subvariety in a Grassmann manifold $  G _ {n, m }  ( k) $
 +
is equivalent to a unique integer combination of the varieties $  S _ {a _ {0}  \dots a _ {m} } $,  
 +
where $  \sum _ {i = 0 }  ^ {m} a _ {i} - m ( m + 1)/2 = \rho $(
 +
see [[#References|[1]]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503020.png" /> is the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503021.png" /> of real numbers, the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503022.png" /> of complex numbers or the skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503023.png" /> of quaternions, a Grassmann manifold over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503024.png" /> can be regarded as a compact analytic manifold (which is real if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503025.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503026.png" /> and complex if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503027.png" />). These manifolds are distinguished by the fact that they are the classifying spaces for the classical groups (cf. [[Classical group|Classical group]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503030.png" />, respectively. More exactly, for any [[CW-complex|CW-complex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503031.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503033.png" /> 1, 2 and 4, respectively, the set of isomorphism classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503034.png" />-dimensional vector bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503035.png" /> with base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503036.png" /> is in a natural one-to-one correspondence with the set of homotopy classes of continuous mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503037.png" /> [[#References|[2]]]. A similar theory concerning the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503039.png" /> leads to the study of the Grassmann manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503040.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503041.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503042.png" />) of oriented <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503043.png" />-dimensional spaces in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503044.png" />. The manifolds listed above are closely connected, in particular, with the theory of characteristic classes (cf. [[Characteristic class|Characteristic class]]).
+
If $  k $
 +
is the field $  \mathbf R $
 +
of real numbers, the field $  \mathbf C $
 +
of complex numbers or the skew-field $  \mathbf H $
 +
of quaternions, a Grassmann manifold over $  k $
 +
can be regarded as a compact analytic manifold (which is real if $  k = \mathbf R $
 +
or $  \mathbf H $
 +
and complex if $  k = \mathbf C $).  
 +
These manifolds are distinguished by the fact that they are the classifying spaces for the classical groups (cf. [[Classical group|Classical group]]) $  O ( m) $,  
 +
$  U ( m) $
 +
and $  \mathop{\rm Sp} ( m) $,  
 +
respectively. More exactly, for any [[CW-complex|CW-complex]] $  X $
 +
of dimension $  \leq  c( n + 1) - 2 $,  
 +
where $  c = $
 +
1, 2 and 4, respectively, the set of isomorphism classes of $  m $-
 +
dimensional vector bundles over $  k $
 +
with base $  X $
 +
is in a natural one-to-one correspondence with the set of homotopy classes of continuous mappings $  X \rightarrow G _ {n + m, m }  ( k) $[[#References|[2]]]. A similar theory concerning the groups $  \mathop{\rm SO} ( m) $
 +
and $  \mathop{\rm SU} ( m) $
 +
leads to the study of the Grassmann manifold $  G _ {n, m }  ^ {0} ( k) $(
 +
$  k = \mathbf R $
 +
or $  \mathbf C $)  
 +
of oriented $  m $-
 +
dimensional spaces in $  k  ^ {n} $.  
 +
The manifolds listed above are closely connected, in particular, with the theory of characteristic classes (cf. [[Characteristic class|Characteristic class]]).
  
The role played by Grassmann manifolds in topology necessitated a detailed study of their topological invariants. The oldest method of this study was based on Schubert varieties, with the aid of which a cell decomposition for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503045.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503046.png" />) is readily constructed. It is found, in particular, that the cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503047.png" /> form a basis of the homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503050.png" />. Cohomology algebras of Grassmann manifolds and the effect of Steenrod powers on them have also been thoroughly studied .
+
The role played by Grassmann manifolds in topology necessitated a detailed study of their topological invariants. The oldest method of this study was based on Schubert varieties, with the aid of which a cell decomposition for $  G _ {n, m }  ( k) $(
 +
$  k = \mathbf R , \mathbf C , \mathbf H $)  
 +
is readily constructed. It is found, in particular, that the cycles $  S _ {a _ {0}  \dots a _ {m} } $
 +
form a basis of the homology groups $  H _ {*} ( G _ {n, m }  ( \mathbf C ), \mathbf Z ) $,
 +
$  H _ {*} ( G _ {n, m }  ( \mathbf R ), \mathbf Z _ {2} ) $,
 +
$  H _ {*} ( G _ {n, m }  ( \mathbf H ), \mathbf Z ) $.  
 +
Cohomology algebras of Grassmann manifolds and the effect of Steenrod powers on them have also been thoroughly studied .
  
 
Another aspect of the theory of Grassmann manifolds is that they are homogeneous spaces of linear groups over the corresponding skew-field, and represent basic examples of irreducible symmetric spaces (cf. [[Symmetric space|Symmetric space]]).
 
Another aspect of the theory of Grassmann manifolds is that they are homogeneous spaces of linear groups over the corresponding skew-field, and represent basic examples of irreducible symmetric spaces (cf. [[Symmetric space|Symmetric space]]).
  
Manifolds which are analogous to Grassmann manifolds can also be constructed from subspaces of infinite-dimensional vector spaces. In particular, an important role in the theory of deformation of analytic structures is played by a Banach analytic manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503051.png" />, the elements of which are the closed subspaces of a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503052.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503053.png" /> with a closed direct complement.
+
Manifolds which are analogous to Grassmann manifolds can also be constructed from subspaces of infinite-dimensional vector spaces. In particular, an important role in the theory of deformation of analytic structures is played by a Banach analytic manifold $  G _ {B} $,  
 +
the elements of which are the closed subspaces of a Banach space $  B $
 +
over $  \mathbf C $
 +
with a closed direct complement.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.V.D. Hodge,   D. Pedoe,   "Methods of algebraic geometry" , '''2''' , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Husemoller,   "Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> A. Borel,   "Sur la cohomogie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts" ''Ann of Math.'' , '''57''' (1953) pp. 115–207</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> A. Borel,   "La cohomologie mod 2 de certains espaces homogènes" ''Comm. Math. Helv.'' , '''27''' (1953) pp. 165–197</TD></TR><TR><TD valign="top">[3c]</TD> <TD valign="top"> A. Borel,   J.-P. Serre,   "Groupes de Lie et puissances réduites de Steenrod" ''Amer. J. Math.'' , '''75''' (1953) pp. 409–448</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.S. Chern,   "Complex manifolds without potential theory" , Springer (1979)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , '''2''' , Cambridge Univ. Press (1952) {{MR|0048065}} {{ZBL|0048.14502}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) {{MR|0229247}} {{ZBL|0144.44804}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> A. Borel, "Sur la cohomogie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts" ''Ann of Math.'' , '''57''' (1953) pp. 115–207</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> A. Borel, "La cohomologie mod 2 de certains espaces homogènes" ''Comm. Math. Helv.'' , '''27''' (1953) pp. 165–197 {{MR|0057541}} {{ZBL|0052.40301}} </TD></TR><TR><TD valign="top">[3c]</TD> <TD valign="top"> A. Borel, J.-P. Serre, "Groupes de Lie et puissances réduites de Steenrod" ''Amer. J. Math.'' , '''75''' (1953) pp. 409–448 {{MR|0058213}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) {{MR|0533884}} {{ZBL|0444.32004}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
Choose a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503054.png" />. For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503055.png" /> choose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503056.png" /> vectors generating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503057.png" />. These vectors generate an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503058.png" /> matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503059.png" />. Now assign to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503060.png" /> the point in the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503062.png" />, whose homogeneous coordinates are the determinants of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503063.png" /> submatrices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503064.png" />. This point does not depend on the choices made. This defines an imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503065.png" />, called the Plücker imbedding. Correspondingly, these coordinates are called [[Plücker coordinates|Plücker coordinates]]; they are also called Grassmann coordinates (cf. [[Exterior algebra|Exterior algebra]] and above). As a subvariety of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503066.png" /> the Grassmann manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503067.png" /> is given by a number of quadratic relations, called the Plücker relations, cf. [[#References|[a1]]], Sect. 1.5.
+
Choose a basis in $  k  ^ {n} $.  
 +
For each $  x \in G _ {n,m} ( k) $
 +
choose $  m $
 +
vectors generating $  x $.  
 +
These vectors generate an $  ( n \times m ) $
 +
matrix $  A $.  
 +
Now assign to $  x $
 +
the point in the projective space $  \mathbf P  ^ {N-} 1 ( k) $,  
 +
$  N = ( _ {m}  ^ {n} ) $,  
 +
whose homogeneous coordinates are the determinants of all $  ( m \times m ) $
 +
submatrices of $  A $.  
 +
This point does not depend on the choices made. This defines an imbedding $  G _ {n,m} ( k) \rightarrow \mathbf P  ^ {N-} 1 ( k) $,  
 +
called the Plücker imbedding. Correspondingly, these coordinates are called [[Plücker coordinates|Plücker coordinates]]; they are also called Grassmann coordinates (cf. [[Exterior algebra|Exterior algebra]] and above). As a subvariety of $  \mathbf P  ^ {N-} 1 ( k) $
 +
the Grassmann manifold $  G _ {n,m} ( k) $
 +
is given by a number of quadratic relations, called the Plücker relations, cf. [[#References|[a1]]], Sect. 1.5.
  
There are a number of different notations in use; thus, the Grassmann manifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503068.png" />-planes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503069.png" /> is variously denoted <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503070.png" /> (as here), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503072.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503073.png" />, the last one generalizing to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503074.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503075.png" /> a vector space.
+
There are a number of different notations in use; thus, the Grassmann manifold of $  m $-
 +
planes in $  k  ^ {n} $
 +
is variously denoted $  G _ {n,m} ( k) $(
 +
as here), $  G _ {m,n} ( k) $,  
 +
$  G ( m , n ;  k ) $,
 +
and $  G _ {m} ( k  ^ {n} ) $,  
 +
the last one generalizing to $  G _ {m} ( V) $
 +
with $  V $
 +
a vector space.
  
In the setting of algebraic geometry one defines the projective scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503076.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503077.png" /> whose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503078.png" />-points form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503079.png" />.
+
In the setting of algebraic geometry one defines the projective scheme $  G _ {n,m} $
 +
defined over $  \mathbf Z $
 +
whose $  k $-
 +
points form $  G _ {n,m} ( k) $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths,   J.E. Harris,   "Principles of algebraic geometry" , '''1–2''' , Wiley (Interscience) (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.O. Wells jr.,   "Differential analysis on complex manifolds" , Springer (1980)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , '''1–2''' , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) {{MR|0608414}} {{ZBL|0435.32004}} </TD></TR></table>

Latest revision as of 19:42, 5 June 2020


Grassmannian

The set $ G _ {n, m } ( k) $, $ m \leq n $, of all $ m $- dimensional subspaces in an $ n $- dimensional vector space $ V $ over a skew-field $ k $. If $ k $ is a field, then $ G _ {n, m } ( k) $ can be imbedded in a $ ( _ { m } ^ {mn} ) - 1 $- dimensional projective space over $ k $ as a compact algebraic variety with the aid of Grassmann coordinates (cf. Exterior algebra). In the study of the geometrical properties of a Grassmann manifold an important role is played by the so-called Schubert varieties $ S _ {a _ {0} \dots a _ {m} } $, $ 0 \leq a _ {0} < \dots < a _ {m} \leq n $, which are defined as follows. If $ 0 = V _ {0} \subset V _ {1} \subset \dots \subset V _ {n} = V $ is a flag of subspaces, i.e. a chain of subspaces such that also $ \mathop{\rm dim} V _ {k} = k $, then

$$ S _ {a _ {0} \dots a _ {m} } = \ \{ {W \in G _ {n, m } ( k) } : { \mathop{\rm dim} ( W \cap V _ {a _ {r} } ) \geq r,\ 0 \leq r \leq m } \} . $$

Any $ \rho $- dimensional algebraic subvariety in a Grassmann manifold $ G _ {n, m } ( k) $ is equivalent to a unique integer combination of the varieties $ S _ {a _ {0} \dots a _ {m} } $, where $ \sum _ {i = 0 } ^ {m} a _ {i} - m ( m + 1)/2 = \rho $( see [1]).

If $ k $ is the field $ \mathbf R $ of real numbers, the field $ \mathbf C $ of complex numbers or the skew-field $ \mathbf H $ of quaternions, a Grassmann manifold over $ k $ can be regarded as a compact analytic manifold (which is real if $ k = \mathbf R $ or $ \mathbf H $ and complex if $ k = \mathbf C $). These manifolds are distinguished by the fact that they are the classifying spaces for the classical groups (cf. Classical group) $ O ( m) $, $ U ( m) $ and $ \mathop{\rm Sp} ( m) $, respectively. More exactly, for any CW-complex $ X $ of dimension $ \leq c( n + 1) - 2 $, where $ c = $ 1, 2 and 4, respectively, the set of isomorphism classes of $ m $- dimensional vector bundles over $ k $ with base $ X $ is in a natural one-to-one correspondence with the set of homotopy classes of continuous mappings $ X \rightarrow G _ {n + m, m } ( k) $[2]. A similar theory concerning the groups $ \mathop{\rm SO} ( m) $ and $ \mathop{\rm SU} ( m) $ leads to the study of the Grassmann manifold $ G _ {n, m } ^ {0} ( k) $( $ k = \mathbf R $ or $ \mathbf C $) of oriented $ m $- dimensional spaces in $ k ^ {n} $. The manifolds listed above are closely connected, in particular, with the theory of characteristic classes (cf. Characteristic class).

The role played by Grassmann manifolds in topology necessitated a detailed study of their topological invariants. The oldest method of this study was based on Schubert varieties, with the aid of which a cell decomposition for $ G _ {n, m } ( k) $( $ k = \mathbf R , \mathbf C , \mathbf H $) is readily constructed. It is found, in particular, that the cycles $ S _ {a _ {0} \dots a _ {m} } $ form a basis of the homology groups $ H _ {*} ( G _ {n, m } ( \mathbf C ), \mathbf Z ) $, $ H _ {*} ( G _ {n, m } ( \mathbf R ), \mathbf Z _ {2} ) $, $ H _ {*} ( G _ {n, m } ( \mathbf H ), \mathbf Z ) $. Cohomology algebras of Grassmann manifolds and the effect of Steenrod powers on them have also been thoroughly studied .

Another aspect of the theory of Grassmann manifolds is that they are homogeneous spaces of linear groups over the corresponding skew-field, and represent basic examples of irreducible symmetric spaces (cf. Symmetric space).

Manifolds which are analogous to Grassmann manifolds can also be constructed from subspaces of infinite-dimensional vector spaces. In particular, an important role in the theory of deformation of analytic structures is played by a Banach analytic manifold $ G _ {B} $, the elements of which are the closed subspaces of a Banach space $ B $ over $ \mathbf C $ with a closed direct complement.

References

[1] W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , 2 , Cambridge Univ. Press (1952) MR0048065 Zbl 0048.14502
[2] D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) MR0229247 Zbl 0144.44804
[3a] A. Borel, "Sur la cohomogie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts" Ann of Math. , 57 (1953) pp. 115–207
[3b] A. Borel, "La cohomologie mod 2 de certains espaces homogènes" Comm. Math. Helv. , 27 (1953) pp. 165–197 MR0057541 Zbl 0052.40301
[3c] A. Borel, J.-P. Serre, "Groupes de Lie et puissances réduites de Steenrod" Amer. J. Math. , 75 (1953) pp. 409–448 MR0058213
[4] S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) MR0533884 Zbl 0444.32004

Comments

Choose a basis in $ k ^ {n} $. For each $ x \in G _ {n,m} ( k) $ choose $ m $ vectors generating $ x $. These vectors generate an $ ( n \times m ) $ matrix $ A $. Now assign to $ x $ the point in the projective space $ \mathbf P ^ {N-} 1 ( k) $, $ N = ( _ {m} ^ {n} ) $, whose homogeneous coordinates are the determinants of all $ ( m \times m ) $ submatrices of $ A $. This point does not depend on the choices made. This defines an imbedding $ G _ {n,m} ( k) \rightarrow \mathbf P ^ {N-} 1 ( k) $, called the Plücker imbedding. Correspondingly, these coordinates are called Plücker coordinates; they are also called Grassmann coordinates (cf. Exterior algebra and above). As a subvariety of $ \mathbf P ^ {N-} 1 ( k) $ the Grassmann manifold $ G _ {n,m} ( k) $ is given by a number of quadratic relations, called the Plücker relations, cf. [a1], Sect. 1.5.

There are a number of different notations in use; thus, the Grassmann manifold of $ m $- planes in $ k ^ {n} $ is variously denoted $ G _ {n,m} ( k) $( as here), $ G _ {m,n} ( k) $, $ G ( m , n ; k ) $, and $ G _ {m} ( k ^ {n} ) $, the last one generalizing to $ G _ {m} ( V) $ with $ V $ a vector space.

In the setting of algebraic geometry one defines the projective scheme $ G _ {n,m} $ defined over $ \mathbf Z $ whose $ k $- points form $ G _ {n,m} ( k) $.

References

[a1] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , 1–2 , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[a2] R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) MR0608414 Zbl 0435.32004
How to Cite This Entry:
Grassmann manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Grassmann_manifold&oldid=11701
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article