Namespaces
Variants
Actions

Gram-Charlier series

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 60E99 [MSN][ZBL]

A series defined by the expression

$$ \tag{1 } f _ {A} ( x) = \ f ( x) + \sum _ {k = 3 } ^ { n } a _ {k} f ^ { ( k) } ( x) $$

or

$$ \tag{2 } f _ {B} ( x) = \ \psi ( x) \sum _ {m = 0 } ^ { n } b _ {m} g _ {m} ( x), $$

where $ x $ is the normalized value of a random variable.

The series (1) is known as the Gram–Charlier series of type $ A $; here

$$ f ( x) = \ { \frac{1}{\sqrt {2 \pi }} } e ^ {- x ^ {2} /2 } , $$

$ f ^ { ( k) } $ is the $ k $-th derivative of $ f $, which can be represented as

$$ f ^ { ( k) } ( x) = \ (- 1) ^ {k} H _ {k} ( x) f ( x), $$

where $ H _ {k} ( x) $ are the Chebyshev–Hermite polynomials. The derivatives $ f ^ { ( k) } $ and the polynomials $ H _ {k} $ are orthogonal, owing to which the coefficients $ a _ {k} $ can be defined by the basic moments $ r _ {k} $ of the given distribution series. If one restricts to the first few terms of the series (1), one obtains

$$ f _ {A} ( x) = \ f ( x) + \frac{r _ {3} }{3!} f ^ { ( 3) } ( x) + $$

$$ + \frac{r _ {4} - 3 }{4! } f ^ { ( 4) } ( x) - \frac{r _ {5} - 10r _ {3} }{5! } f ^ { ( 3) } ( x) + \frac{r _ {4} - 15r _ {4} + 30 }{6! } f ^ { ( 6) } ( x). $$

The series (2) is known as a Gram–Charlier series of type $ B $; here

$$ \psi ( x) = \ \frac{\lambda ^ {x} }{x!} e ^ {- \lambda } ,\ \ x = 0, 1 \dots $$

while $ g _ {m} ( x) $ are polynomials analogous to the polynomials $ H _ {k} ( x) $.

If one restricts to the first terms of the series (2), one obtains

$$ f _ {B} ( x) = \ \frac{\lambda ^ {x} }{x! } e ^ {- \lambda } \left \{ 1 + \frac{\mu _ {2} - \lambda }{\lambda ^ {2} } \left [ \frac{x ^ {[2]} }{2 } - \lambda x ^ {[1]} + \frac{\lambda ^ {2} }{2 } \right ] \right . + $$

$$ + \left . \frac{\mu _ {3} - 3 \mu _ {2} + 2 \lambda }{\lambda ^ {3} } \left [ \frac{x ^ {[3]} }{6 } - { \frac \lambda {2} } x ^ {[2]} + \frac{\lambda ^ {2} }{2 } x ^ {[1]} - \frac{\lambda ^ {3} }{6 } \right ] \right \} . $$

Here $ \mu _ {i} $ are the central moments of the distribution, while $ x ^ {[i]} = x( x - 1) \dots ( x - i + 1) $.

Gram–Charlier series were obtained by J.P. Gram [G] and C.V.L. Charlier [Ch] in their study of functions of the form

$$ B _ {0} ( x) = \ { \frac{1}{2 \pi } } \int\limits _ {- \pi } ^ { {+ } \pi } e ^ {- itx } \phi ( t) dt. $$

These are convenient for the interpolation between the values $ B ( m) = ( n!/m! ( n - m)!) p ^ {m} q ^ {n-m} $ of the general term of the binomial distribution, where

$$ \phi ( t) = \ ( pe ^ {it} + q) ^ {n} = \ \sum _ {m = 0 } ^ { n } B ( m) e ^ {itm} $$

is the characteristic function of the binomial distribution. The expansion of $ \mathop{\rm ln} \phi ( t) $ in powers of $ t $ yields a Gram–Charlier series of type $ A $ for $ B _ {0} ( x) $, whereas the expansion of $ \mathop{\rm ln} \phi ( t) $ in powers of $ p $ yields a Gram–Charlier series of type $ B $.

References

[G] J.P. Gram, "Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadraten" J. Reine Angew. Math. , 94 (1883) pp. 41–73
[Ch] C.V.L. Charlier, "Frequency curves of type in heterograde statistics" Ark. Mat. Astr. Fysik , 9 : 25 (1914) pp. 1–17
[M] A.K. Mitropol'skii, "Curves of distributions" , Leningrad (1960) (In Russian)

Comments

Cf. also Edgeworth series.

References

[Cr] H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) pp. Sect. 17.6
How to Cite This Entry:
Gram-Charlier series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gram-Charlier_series&oldid=52263
This article was adapted from an original article by A.K. Mitropol'skii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article