Graded algebra

From Encyclopedia of Mathematics
Revision as of 17:22, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An algebra whose additive group can be represented in the form of a (weak) direct sum of groups , where for any . As a result, the additive group of a graded algebra (considered as a module over the ring of integers) is a positively graded module. As an example of a graded algebra one can quote the algebra of polynomials over a field , where is the subspace generated by the monomials of degree (). One can also define a graded algebra in a more general manner as an algebra whose additive group can be represented as a direct sum of groups , where runs through a certain commutative semi-group and for any . The concept of a filtered algebra is closely connected with that of a graded algebra. It is in fact possible to define, in a natural manner, an ascending filtration

on each graded algebra . Conversely, if is a filtered algebra , then one defines the graded algebra (where , ), which is called the graded algebra associated with . A graded ring is defined in a similar manner.


For an arbitrary group one may define a gradation of type on an algebra , i.e. where each is an additive subgroup of and for all . The group algebra over the field , as well as crossed products defined by a group morphism and a -cocycle , are examples of -graded algebras (see also Cross product). The use of -gradations that are not necessarily positive gradations allows one to consider the graded rings associated to -adic filtrations on a ring ; for an ideal of the -adic filtration is given by a descending chain , and then , where is negatively graded.


[a1] N. Bourbaki, "Algèbre commutative" , Eléments de mathématiques , Hermann (1961) pp. Chapt. 3. Graduations, filtrations, et topologies
[a2] C. Nâstâsescu, F. van Oystaeyen, "Graded ring theory" , North-Holland (1982)
How to Cite This Entry:
Graded algebra. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by E.N. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article