Namespaces
Variants
Actions

Grötzsch theorems

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Various results on conformal and quasi-conformal mappings obtained by H. Grötzsch . He developed the strip method, which is the first general form of the method of conformal moduli (cf. Extremal metric, method of the; Strip method (analytic functions)), and used it in his systematic study of a large number of extremal problems of conformal mapping of multiply-connected (including infinitely-connected) domains, including the problems of the existence, uniqueness and geometric properties of extremal mappings. A few of the simpler Grötzsch theorems are presented below.

Of all univalent conformal mappings $ w = f ( z) $ of a given annulus $ K _ {R} = \{ {z } : {R < | z | < 1 } \} $ under which the unit circle $ \Gamma = \{ {z } : {| z | = 1 } \} $ is mapped onto itself, the maximum diameter of the image of the circle $ \Gamma _ {R} = \{ {z } : {| z | = R } \} $ is attained if and only if the boundary component $ f ( \Gamma _ {R} ) $ is a rectilinear segment with its centre at the point $ w = 0 $. A similar result is valid for multiply-connected domains.

Out of all univalent conformal mappings $ w = f ( z) $ of a given multiply-connected domain $ B \ni \infty $ with expansion $ f ( z) = z + O ( 1) $ $ ( z \rightarrow \infty ) $ at infinity and normalization $ f ( z _ {0} ) = 0 $ at a given point $ z _ {0} \in B $, the maximum of $ | f ^ { \prime } ( z _ {0} ) | $, and the maximum (minimum) of $ | f ( z _ {1} ) | $ at a given point $ z _ {1} \in B $, $ z _ {1} \neq z _ {0} $, are attained only on mappings that map each boundary component of $ B $, respectively, to an arc of a circle with centre at the point $ w = 0 $, or to an arc of an ellipse (hyperbola) with foci at the points $ w = 0 $ and $ w = w ^ \prime = f ( z _ {1} ) $. In each one of these problems the extremal mapping exists and is unique. In this class of mappings, for a given $ z _ {1} \in B $, the disc

$$ \left \{ {w } : { \left | w - { \frac{1}{2} } ( w ^ \prime + w ^ {\prime\prime} ) \ \right | \leq \ { \frac{1}{2} } | w ^ \prime - w ^ {\prime\prime} | \ } \right \} $$

is the range of the function $ \Phi ( f ) = \mathop{\rm ln} ( f ( z _ {1} )/z _ {1} ) $. Each boundary point of this disc is a value of $ \Phi $ on a unique mapping in the class under study with specific geometric properties.

Grötzsch was the first to propose a form of representation of a quasi-conformal mapping, and to apply to such a mappings many extremal results which he had formerly obtained for conformal mappings.

References

[1a] H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche I" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 81 (1929) pp. 38–47
[1b] H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 81 (1929) pp. 217–221
[1c] H. Grötzsch, Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 82 (1930) pp. 69–80
[1d] H. Grötzsch, "Ueber die Verschiebung bei schlichter konformer Abbildung schlichter Bereiche II" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 84 (1932) pp. 269–278
[2] J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)

Comments

Grötzsch' theorems are distortion theorems.

Cf. also Grötzsch principle.

How to Cite This Entry:
Grötzsch theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gr%C3%B6tzsch_theorems&oldid=47148
This article was adapted from an original article by P.M. Tamrazov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article