Namespaces
Variants
Actions

Difference between revisions of "General-type algebraic surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
g0437401.png
 +
$#A+1 = 43 n = 6
 +
$#C+1 = 43 : ~/encyclopedia/old_files/data/G043/G.0403740 General\AAhtype algebraic surface,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''algebraic surface of general type''
 
''algebraic surface of general type''
  
A surface of one of the broadest classes of algebraic surfaces (cf. [[Algebraic surface|Algebraic surface]]) in the Enriques classification. Namely, a smooth projective surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437401.png" /> over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437402.png" /> is called an algebraic surface of general type if
+
A surface of one of the broadest classes of algebraic surfaces (cf. [[Algebraic surface|Algebraic surface]]) in the Enriques classification. Namely, a smooth projective surface $  X $
 +
over an algebraically closed field $  k $
 +
is called an algebraic surface of general type if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437403.png" /></td> </tr></table>
+
$$
 +
\kappa ( x)  = 2,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437404.png" /> is the [[Kodaira dimension|Kodaira dimension]]. This condition is equivalent to the fact that for an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437405.png" /> the linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437406.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437407.png" /> is the canonical [[Divisor|divisor]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437408.png" />, defines a birational mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g0437409.png" /> onto its image in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374010.png" /> for a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374011.png" />. Every algebraic surface of general type possesses a birational morphism onto its minimal model.
+
where $  \kappa $
 +
is the [[Kodaira dimension|Kodaira dimension]]. This condition is equivalent to the fact that for an integer $  n > 0 $
 +
the linear system $  | nK | $,  
 +
where $  K $
 +
is the [[canonical divisor]] on $  X $,  
 +
defines a birational mapping of $  X $
 +
onto its image in $  P  ^ {N} $
 +
for a certain $  N $.  
 +
Every algebraic surface of general type possesses a birational morphism onto its minimal model.
  
 
Minimal algebraic surfaces of general type are characterized (see [[#References|[1]]], [[#References|[3]]], [[#References|[6]]]) by each of the following sets of properties:
 
Minimal algebraic surfaces of general type are characterized (see [[#References|[1]]], [[#References|[3]]], [[#References|[6]]]) by each of the following sets of properties:
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374013.png" /> for any effective divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374014.png" />;
+
a) $  K ^ { 2 } > 0 $
 +
and $  KD \geq  0 $
 +
for any effective divisor $  D $;
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374017.png" /> is the second plurigenus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374018.png" />;
+
b) $  K ^ { 2 } > 0 $
 +
and $  P _ {2} \geq  2 $,  
 +
where $  P _ {2} = \mathop{\rm dim}  | 2 K | + 1 $
 +
is the second plurigenus of $  X $;
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374019.png" /> and the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374020.png" /> is not rational (cf. [[Rational surface|Rational surface]]);
+
c) $  K ^ { 2 } > 0 $
 +
and the surface $  X $
 +
is not rational (cf. [[Rational surface|Rational surface]]);
  
d) there exists an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374021.png" /> such that, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374022.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374023.png" /> defined by the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374024.png" /> is a birational morphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374025.png" /> onto its image in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374026.png" />.
+
d) there exists an integer $  n _ {0} $
 +
such that, for any $  n \geq  n _ {0} $,  
 +
the mapping $  \phi _ {nK} $
 +
defined by the system $  | n K | $
 +
is a birational morphism of $  X $
 +
onto its image in $  P ^ { \mathop{\rm dim}  | n K | } $.
  
For algebraic surfaces of general type, relations (in the form of inequalities) exist between the numerical characteristics. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374027.png" /> be the [[Geometric genus|geometric genus]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374028.png" /> be the [[Irregularity|irregularity]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374029.png" />. Then for a minimal algebraic surface of general type the following inequalities hold:
+
For algebraic surfaces of general type, relations (in the form of inequalities) exist between the numerical characteristics. Let $  p _ {g} $
 +
be the [[Geometric genus|geometric genus]] and let $  q $
 +
be the [[Irregularity|irregularity]] of $  X $.  
 +
Then for a minimal algebraic surface of general type the following inequalities hold:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374030.png" />;
+
1) $  q \leq  p _ {g} $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374031.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374032.png" /> is even, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374033.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374034.png" /> is odd (these two inequalities are called Noether's inequalities);
+
2) $  p _ {g} \leq  K ^ { 2 } /2 + 2 $
 +
if $  K ^ { 2 } $
 +
is even, $  p _ {g} \leq  ( K ^ { 2 } + 3)/2 $
 +
if $  K ^ { 2 } $
 +
is odd (these two inequalities are called Noether's inequalities);
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374035.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374036.png" /> is the second [[Chern class|Chern class]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374037.png" /> (or the topological [[Euler characteristic|Euler characteristic]]).
+
3) $  K ^ { 2 } \leq  3C _ {2} $,  
 +
where $  C _ {2} $
 +
is the second [[Chern class|Chern class]] of $  X $(
 +
or the topological [[Euler characteristic|Euler characteristic]]).
  
The most complete result on multi-canonical mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374038.png" /> of algebraic surfaces of general type is the Bombieri–Kodaira theorem: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374039.png" /> be a minimal algebraic surface of general type over an algebraically closed field of characteristic 0, then the mapping
+
The most complete result on multi-canonical mappings $  \phi _ {nK} $
 +
of algebraic surfaces of general type is the Bombieri–Kodaira theorem: Let $  X $
 +
be a minimal algebraic surface of general type over an algebraically closed field of characteristic 0, then the mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374040.png" /></td> </tr></table>
+
$$
 +
\phi _ {nK} : X  \rightarrow  P ^ { \mathop{\rm dim}  | n K | }
 +
$$
  
is a birational morphism onto its own image for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374041.png" />. Algebraic surfaces of general type for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374042.png" /> does not possess this property exist (see [[#References|[5]]], , [[#References|[9]]]).
+
is a birational morphism onto its own image for all $  n \geq  5 $.  
 +
Algebraic surfaces of general type for which $  \phi _ {4K} $
 +
does not possess this property exist (see [[#References|[5]]], , [[#References|[9]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R., et al. Shafarevich, "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|1392959}} {{MR|1060325}} {{ZBL|0830.00008}} {{ZBL|0733.14015}} {{ZBL|0832.14026}} {{ZBL|0509.14036}} {{ZBL|0492.14024}} {{ZBL|0379.14006}} {{ZBL|0253.14006}} {{ZBL|0154.21001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.A. Bogomolov, "Holomorphic tensors and vector bundles on projective varieties" ''Math. USSR-Izv.'' , '''13''' : 3 (1979) pp. 499–555 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''42''' (1978) pp. 1227–1287 {{MR|}} {{ZBL|0439.14002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Beauville, "Surfaces algébriques complexes" ''Astérisque'' , '''54''' (1978) {{MR|0485887}} {{ZBL|0394.14014}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Bombieri, "Canonical models of surfaces of general type" ''Publ. Math. IHES'' , '''42''' (1972) pp. 447–495 {{MR|0318163}} {{ZBL|0259.14005}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Bombieri, F. Catanese, "The tricanonical map of surfaces with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374044.png" />" K.G. Ramanathan (ed.) , ''C.P. Ramanujam, a tribute'' , Springer (1978) pp. 279–290 {{MR|541028}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Husemoller, "Classification and embeddings of surfaces" R. Hartshorne (ed.) , ''Algebraic geometry (Arcata, 1974)'' , ''Proc. Symp. Pure Math.'' , '''29''' , Amer. Math. Soc. (1974) pp. 329–420 {{MR|0506292}} {{ZBL|0326.14009}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374045.png" />, I" ''Ann. of Math.'' , '''104''' (1976) pp. 357–387</TD></TR><TR><TD valign="top">[8a]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374046.png" />, II" ''Invent. Math.'' , '''37''' (1976) pp. 121–155</TD></TR><TR><TD valign="top">[8b]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374047.png" />, III" ''Invent. Math.'' , '''47''' (1978) pp. 209–248 {{MR|501370}} {{ZBL|}} </TD></TR><TR><TD valign="top">[8c]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374048.png" />, IV" ''Invent. Math.'' , '''50''' (1978–1979) pp. 103–128</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> K. Kodaira, "Pluricanonical systems on algebraic surfaces of general type" ''J. Math. Soc. Japan'' , '''20''' (1968) pp. 170–192 {{MR|0224613}} {{ZBL|0157.27704}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> Y. Miyaoka, "On the Chern numbers of surfaces of general type" ''Invent. Math.'' , '''42''' (1977) pp. 225–237 {{MR|0460343}} {{ZBL|0374.14007}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R., et al. Shafarevich, "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|1392959}} {{MR|1060325}} {{ZBL|0830.00008}} {{ZBL|0733.14015}} {{ZBL|0832.14026}} {{ZBL|0509.14036}} {{ZBL|0492.14024}} {{ZBL|0379.14006}} {{ZBL|0253.14006}} {{ZBL|0154.21001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.A. Bogomolov, "Holomorphic tensors and vector bundles on projective varieties" ''Math. USSR-Izv.'' , '''13''' : 3 (1979) pp. 499–555 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''42''' (1978) pp. 1227–1287 {{MR|}} {{ZBL|0439.14002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Beauville, "Surfaces algébriques complexes" ''Astérisque'' , '''54''' (1978) {{MR|0485887}} {{ZBL|0394.14014}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Bombieri, "Canonical models of surfaces of general type" ''Publ. Math. IHES'' , '''42''' (1972) pp. 447–495 {{MR|0318163}} {{ZBL|0259.14005}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Bombieri, F. Catanese, "The tricanonical map of surfaces with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374044.png" />" K.G. Ramanathan (ed.) , ''C.P. Ramanujam, a tribute'' , Springer (1978) pp. 279–290 {{MR|541028}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Husemoller, "Classification and embeddings of surfaces" R. Hartshorne (ed.) , ''Algebraic geometry (Arcata, 1974)'' , ''Proc. Symp. Pure Math.'' , '''29''' , Amer. Math. Soc. (1974) pp. 329–420 {{MR|0506292}} {{ZBL|0326.14009}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374045.png" />, I" ''Ann. of Math.'' , '''104''' (1976) pp. 357–387</TD></TR><TR><TD valign="top">[8a]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374046.png" />, II" ''Invent. Math.'' , '''37''' (1976) pp. 121–155</TD></TR><TR><TD valign="top">[8b]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374047.png" />, III" ''Invent. Math.'' , '''47''' (1978) pp. 209–248 {{MR|501370}} {{ZBL|}} </TD></TR><TR><TD valign="top">[8c]</TD> <TD valign="top"> E. Horikawa, "Algebraic surfaces of general type with small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374048.png" />, IV" ''Invent. Math.'' , '''50''' (1978–1979) pp. 103–128</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> K. Kodaira, "Pluricanonical systems on algebraic surfaces of general type" ''J. Math. Soc. Japan'' , '''20''' (1968) pp. 170–192 {{MR|0224613}} {{ZBL|0157.27704}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> Y. Miyaoka, "On the Chern numbers of surfaces of general type" ''Invent. Math.'' , '''42''' (1977) pp. 225–237 {{MR|0460343}} {{ZBL|0374.14007}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Some of the above results have only been proved in characteristic zero; for instance, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043740/g04374049.png" /> only holds in characteristic zero.
+
Some of the above results have only been proved in characteristic zero; for instance, the inequality $  K ^ { 2 } \leq  3 C _ {2} $
 +
only holds in characteristic zero.
  
 
For results on canonical models of surfaces of general type in positive characteristic see [[#References|[a2]]].
 
For results on canonical models of surfaces of general type in positive characteristic see [[#References|[a2]]].

Latest revision as of 19:41, 5 June 2020


algebraic surface of general type

A surface of one of the broadest classes of algebraic surfaces (cf. Algebraic surface) in the Enriques classification. Namely, a smooth projective surface $ X $ over an algebraically closed field $ k $ is called an algebraic surface of general type if

$$ \kappa ( x) = 2, $$

where $ \kappa $ is the Kodaira dimension. This condition is equivalent to the fact that for an integer $ n > 0 $ the linear system $ | nK | $, where $ K $ is the canonical divisor on $ X $, defines a birational mapping of $ X $ onto its image in $ P ^ {N} $ for a certain $ N $. Every algebraic surface of general type possesses a birational morphism onto its minimal model.

Minimal algebraic surfaces of general type are characterized (see [1], [3], [6]) by each of the following sets of properties:

a) $ K ^ { 2 } > 0 $ and $ KD \geq 0 $ for any effective divisor $ D $;

b) $ K ^ { 2 } > 0 $ and $ P _ {2} \geq 2 $, where $ P _ {2} = \mathop{\rm dim} | 2 K | + 1 $ is the second plurigenus of $ X $;

c) $ K ^ { 2 } > 0 $ and the surface $ X $ is not rational (cf. Rational surface);

d) there exists an integer $ n _ {0} $ such that, for any $ n \geq n _ {0} $, the mapping $ \phi _ {nK} $ defined by the system $ | n K | $ is a birational morphism of $ X $ onto its image in $ P ^ { \mathop{\rm dim} | n K | } $.

For algebraic surfaces of general type, relations (in the form of inequalities) exist between the numerical characteristics. Let $ p _ {g} $ be the geometric genus and let $ q $ be the irregularity of $ X $. Then for a minimal algebraic surface of general type the following inequalities hold:

1) $ q \leq p _ {g} $;

2) $ p _ {g} \leq K ^ { 2 } /2 + 2 $ if $ K ^ { 2 } $ is even, $ p _ {g} \leq ( K ^ { 2 } + 3)/2 $ if $ K ^ { 2 } $ is odd (these two inequalities are called Noether's inequalities);

3) $ K ^ { 2 } \leq 3C _ {2} $, where $ C _ {2} $ is the second Chern class of $ X $( or the topological Euler characteristic).

The most complete result on multi-canonical mappings $ \phi _ {nK} $ of algebraic surfaces of general type is the Bombieri–Kodaira theorem: Let $ X $ be a minimal algebraic surface of general type over an algebraically closed field of characteristic 0, then the mapping

$$ \phi _ {nK} : X \rightarrow P ^ { \mathop{\rm dim} | n K | } $$

is a birational morphism onto its own image for all $ n \geq 5 $. Algebraic surfaces of general type for which $ \phi _ {4K} $ does not possess this property exist (see [5], , [9]).

References

[1] I.R., et al. Shafarevich, "Algebraic surfaces" Proc. Steklov Inst. Math. , 75 (1967) Trudy Mat. Inst. Steklov. , 75 (1965) MR1392959 MR1060325 Zbl 0830.00008 Zbl 0733.14015 Zbl 0832.14026 Zbl 0509.14036 Zbl 0492.14024 Zbl 0379.14006 Zbl 0253.14006 Zbl 0154.21001
[2] F.A. Bogomolov, "Holomorphic tensors and vector bundles on projective varieties" Math. USSR-Izv. , 13 : 3 (1979) pp. 499–555 Izv. Akad. Nauk SSSR Ser. Mat. , 42 (1978) pp. 1227–1287 Zbl 0439.14002
[3] A. Beauville, "Surfaces algébriques complexes" Astérisque , 54 (1978) MR0485887 Zbl 0394.14014
[4] E. Bombieri, "Canonical models of surfaces of general type" Publ. Math. IHES , 42 (1972) pp. 447–495 MR0318163 Zbl 0259.14005
[5] E. Bombieri, F. Catanese, "The tricanonical map of surfaces with , " K.G. Ramanathan (ed.) , C.P. Ramanujam, a tribute , Springer (1978) pp. 279–290 MR541028
[6] D. Husemoller, "Classification and embeddings of surfaces" R. Hartshorne (ed.) , Algebraic geometry (Arcata, 1974) , Proc. Symp. Pure Math. , 29 , Amer. Math. Soc. (1974) pp. 329–420 MR0506292 Zbl 0326.14009
[7] E. Horikawa, "Algebraic surfaces of general type with small , I" Ann. of Math. , 104 (1976) pp. 357–387
[8a] E. Horikawa, "Algebraic surfaces of general type with small , II" Invent. Math. , 37 (1976) pp. 121–155
[8b] E. Horikawa, "Algebraic surfaces of general type with small , III" Invent. Math. , 47 (1978) pp. 209–248 MR501370
[8c] E. Horikawa, "Algebraic surfaces of general type with small , IV" Invent. Math. , 50 (1978–1979) pp. 103–128
[9] K. Kodaira, "Pluricanonical systems on algebraic surfaces of general type" J. Math. Soc. Japan , 20 (1968) pp. 170–192 MR0224613 Zbl 0157.27704
[10] Y. Miyaoka, "On the Chern numbers of surfaces of general type" Invent. Math. , 42 (1977) pp. 225–237 MR0460343 Zbl 0374.14007

Comments

Some of the above results have only been proved in characteristic zero; for instance, the inequality $ K ^ { 2 } \leq 3 C _ {2} $ only holds in characteristic zero.

For results on canonical models of surfaces of general type in positive characteristic see [a2].

References

[a1] A. van de Ven, "Compact complex surfaces" , Springer (1984) Zbl 0718.14023
[a2] T. Ekedahl, "Canonical models of surfaces of general type in positive characteristic" Publ. Math. IHES , 67 (1988) pp. 97–144 MR0972344 Zbl 0674.14028
How to Cite This Entry:
General-type algebraic surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=General-type_algebraic_surface&oldid=23840
This article was adapted from an original article by V.A. Iskovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article