Namespaces
Variants
Actions

Difference between revisions of "Gauss theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g0435501.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/G043/G.0403550 Gauss theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''(teorema egregium)''
 
''(teorema egregium)''
  
The [[Gaussian curvature|Gaussian curvature]] (the product of the principal curvatures) of a regular surface in Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435501.png" /> remains unchanged when the surface is isometrically deformed. ( "Regularity"  here means <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435502.png" />-smooth immersion.) Gauss' theorem follows from the fact that the Gaussian curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435503.png" /> of a surface at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435504.png" /> can be expressed in terms of the coefficients of the first fundamental form of the surface,
+
The [[Gaussian curvature|Gaussian curvature]] (the product of the principal curvatures) of a regular surface in Euclidean space $  E  ^ {3} $
 +
remains unchanged when the surface is isometrically deformed. ( "Regularity"  here means $  C  ^ {3} $-
 +
smooth immersion.) Gauss' theorem follows from the fact that the Gaussian curvature $  K $
 +
of a surface at a point $  ( u , v) $
 +
can be expressed in terms of the coefficients of the first fundamental form of the surface,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435505.png" /></td> </tr></table>
+
$$
 +
ds  ^ {2}  = E  du  ^ {2} + 2F  du  dv + G  dv  ^ {2} ,
 +
$$
  
and their first and second derivatives at that point. Such an expression for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435506.png" /> is called the Gauss equation, which may be written down in several forms [[#References|[2]]]. The Gauss equation simplifies in special coordinates. Thus, in isothermal coordinates (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435507.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435508.png" />):
+
and their first and second derivatives at that point. Such an expression for $  K $
 +
is called the Gauss equation, which may be written down in several forms [[#References|[2]]]. The Gauss equation simplifies in special coordinates. Thus, in isothermal coordinates ( $  E = G = \lambda $,  
 +
$  F = 0 $):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g0435509.png" /></td> </tr></table>
+
$$
 +
= - {
 +
\frac{1}{2 \lambda }
 +
}
 +
\Delta  \mathop{\rm ln}  \lambda ;
 +
$$
  
in semi-geodesic coordinates (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355011.png" />):
+
in semi-geodesic coordinates ( $  E = 1 $,  
 +
$  F = 0 $):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355012.png" /></td> </tr></table>
+
$$
 +
= -  
 +
\frac{1}{\sqrt G }
  
The Gauss equation and the [[Peterson–Codazzi equations|Peterson–Codazzi equations]] form the conditions for the integrability of the system to which the problem of the reconstruction of a surface from its first and second fundamental forms may be reduced. It follows from Gauss' theorem and from the [[Gauss–Bonnet theorem|Gauss–Bonnet theorem]] that the difference between the sum of the angles of a geodesic triangle on a regular surface and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355013.png" /> is equal to the oriented area of the spherical image of this triangle [[#References|[1]]].
+
\frac{\partial  ^ {2} \sqrt G }{\partial  u  ^ {2} }
 +
.
 +
$$
 +
 
 +
The Gauss equation and the [[Peterson–Codazzi equations|Peterson–Codazzi equations]] form the conditions for the integrability of the system to which the problem of the reconstruction of a surface from its first and second fundamental forms may be reduced. It follows from Gauss' theorem and from the [[Gauss–Bonnet theorem|Gauss–Bonnet theorem]] that the difference between the sum of the angles of a geodesic triangle on a regular surface and $  \pi $
 +
is equal to the oriented area of the spherical image of this triangle [[#References|[1]]].
  
 
Gauss' theorem was established by C.F. Gauss [[#References|[1]]] and it is the first and most important result in the study of the relations between the intrinsic and the extrinsic geometry of surfaces.
 
Gauss' theorem was established by C.F. Gauss [[#References|[1]]] and it is the first and most important result in the study of the relations between the intrinsic and the extrinsic geometry of surfaces.
  
The following generalization of Gauss' theorem is valid [[#References|[3]]], [[#References|[4]]] for a regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355014.png" />-dimensional, surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355015.png" /> in a Riemannian space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355017.png" />:
+
The following generalization of Gauss' theorem is valid [[#References|[3]]], [[#References|[4]]] for a regular $  m $-
 +
dimensional, surface $  F ^ { m } $
 +
in a Riemannian space $  V  ^ {n} $,  
 +
$  2 \leq  m \leq  n - 1 $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
k ( a, b)  = \
 +
\widetilde{k}  ( a, b) +
 +
\sum _ {i = 1 } ^ { {n }  - m }
 +
( l _ {i} ( a, a) l _ {i} ( b, b) - l _ {i} ^ { 2 } ( a, b)),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355020.png" /> are the sectional curvatures of, respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355022.png" /> in the two-dimensional direction defined by the tangent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355023.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355024.png" /> at the point under consideration, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355025.png" /> is the second fundamental form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355026.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355027.png" />-th normal of an orthonormal set of normals at this point. It follows from (*) that, for a hypersurface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355028.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355029.png" />, all even elementary symmetric functions of the principal curvatures
+
where $  k( a, b) $,
 +
$  \widetilde{k}  ( a, b) $
 +
are the sectional curvatures of, respectively, $  F ^ { m } $
 +
and $  V  ^ {n} $
 +
in the two-dimensional direction defined by the tangent vectors $  a, b $
 +
to $  F ^ { m } $
 +
at the point under consideration, and $  l _ {i} $
 +
is the second fundamental form of $  F ^ { m } $
 +
with respect to the $  i $-
 +
th normal of an orthonormal set of normals at this point. It follows from (*) that, for a hypersurface $  F ^ { n- 1 } $
 +
in $  E  ^ {n} $,  
 +
all even elementary symmetric functions of the principal curvatures
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355030.png" /></td> </tr></table>
+
$$
 +
K _ {2p}  = \
 +
\sum _ {i _ {1} <\dots< i _ {2p} }
 +
k _ {i _ {1}  } \dots k _ {i _ {2p}  } ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355031.png" />, are defined by the first fundamental form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355032.png" />. In an even-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355034.png" />, a hypersurface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355035.png" /> is uniquely defined by its first fundamental form and by the Gauss–Kronecker curvature
+
$  2 \leq  2p \leq  n - 1 $,  
 +
are defined by the first fundamental form of $  F ^ { n- 1 } $.  
 +
In an even-dimensional space $  E  ^ {2m} $,  
 +
$  m > 1 $,  
 +
a hypersurface $  F ^ { 2m- 1 } $
 +
is uniquely defined by its first fundamental form and by the Gauss–Kronecker curvature
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355036.png" /></td> </tr></table>
+
$$
 +
= k _ {1} \dots k _ {2m - 1 }  ,
 +
$$
  
 
on the condition that the latter is non-zero [[#References|[5]]].
 
on the condition that the latter is non-zero [[#References|[5]]].
  
For large classes of two-dimensional irregular surfaces in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355037.png" /> it is possible to define an  "external curvatureexternal curvature"  as a Borel measure connected with the spherical mapping and an  "intrinsic curvatureintrinsic curvature"  as a measure connected with the difference between the sum of the angles of a triangle and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355038.png" />. A generalization of Gauss' theorem is the statement that the external and the internal curvatures coincide. Such a generalization of Gauss' theorem was obtained for general convex surfaces [[#References|[6]]] and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043550/g04355039.png" />-smooth surfaces of bounded external curvature [[#References|[7]]].
+
For large classes of two-dimensional irregular surfaces in $  E  ^ {3} $
 +
it is possible to define an  "external curvatureexternal curvature"  as a Borel measure connected with the spherical mapping and an  "intrinsic curvatureintrinsic curvature"  as a measure connected with the difference between the sum of the angles of a triangle and $  \pi $.  
 +
A generalization of Gauss' theorem is the statement that the external and the internal curvatures coincide. Such a generalization of Gauss' theorem was obtained for general convex surfaces [[#References|[6]]] and for $  C  ^ {1} $-
 +
smooth surfaces of bounded external curvature [[#References|[7]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Allgemeine Flächentheorie" , W. Engelmann , Leipzig  (1900)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Blaschke,  "Einführung in die Differentialgeometrie" , Springer  (1950)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Gromoll,  W. Klingenberg,  W. Meyer,  "Riemannsche Geometrie im Grossen" , Springer  (1968)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.P. Eisenhart,  "Riemannian geometry" , Princeton Univ. Press  (1949)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Sternberg,  "Lectures on differential geometry" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.D. Aleksandrov,  "Die innere Geometrie der konvexen Flächen" , Akademie Verlag  (1955)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.V. Pogorelov,  "Extrinsic geometry of convex surfaces" , Amer. Math. Soc.  (1972)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Allgemeine Flächentheorie" , W. Engelmann , Leipzig  (1900)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Blaschke,  "Einführung in die Differentialgeometrie" , Springer  (1950)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Gromoll,  W. Klingenberg,  W. Meyer,  "Riemannsche Geometrie im Grossen" , Springer  (1968)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.P. Eisenhart,  "Riemannian geometry" , Princeton Univ. Press  (1949)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Sternberg,  "Lectures on differential geometry" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.D. Aleksandrov,  "Die innere Geometrie der konvexen Flächen" , Akademie Verlag  (1955)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.V. Pogorelov,  "Extrinsic geometry of convex surfaces" , Amer. Math. Soc.  (1972)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 19:41, 5 June 2020


(teorema egregium)

The Gaussian curvature (the product of the principal curvatures) of a regular surface in Euclidean space $ E ^ {3} $ remains unchanged when the surface is isometrically deformed. ( "Regularity" here means $ C ^ {3} $- smooth immersion.) Gauss' theorem follows from the fact that the Gaussian curvature $ K $ of a surface at a point $ ( u , v) $ can be expressed in terms of the coefficients of the first fundamental form of the surface,

$$ ds ^ {2} = E du ^ {2} + 2F du dv + G dv ^ {2} , $$

and their first and second derivatives at that point. Such an expression for $ K $ is called the Gauss equation, which may be written down in several forms [2]. The Gauss equation simplifies in special coordinates. Thus, in isothermal coordinates ( $ E = G = \lambda $, $ F = 0 $):

$$ K = - { \frac{1}{2 \lambda } } \Delta \mathop{\rm ln} \lambda ; $$

in semi-geodesic coordinates ( $ E = 1 $, $ F = 0 $):

$$ K = - \frac{1}{\sqrt G } \frac{\partial ^ {2} \sqrt G }{\partial u ^ {2} } . $$

The Gauss equation and the Peterson–Codazzi equations form the conditions for the integrability of the system to which the problem of the reconstruction of a surface from its first and second fundamental forms may be reduced. It follows from Gauss' theorem and from the Gauss–Bonnet theorem that the difference between the sum of the angles of a geodesic triangle on a regular surface and $ \pi $ is equal to the oriented area of the spherical image of this triangle [1].

Gauss' theorem was established by C.F. Gauss [1] and it is the first and most important result in the study of the relations between the intrinsic and the extrinsic geometry of surfaces.

The following generalization of Gauss' theorem is valid [3], [4] for a regular $ m $- dimensional, surface $ F ^ { m } $ in a Riemannian space $ V ^ {n} $, $ 2 \leq m \leq n - 1 $:

$$ \tag{* } k ( a, b) = \ \widetilde{k} ( a, b) + \sum _ {i = 1 } ^ { {n } - m } ( l _ {i} ( a, a) l _ {i} ( b, b) - l _ {i} ^ { 2 } ( a, b)), $$

where $ k( a, b) $, $ \widetilde{k} ( a, b) $ are the sectional curvatures of, respectively, $ F ^ { m } $ and $ V ^ {n} $ in the two-dimensional direction defined by the tangent vectors $ a, b $ to $ F ^ { m } $ at the point under consideration, and $ l _ {i} $ is the second fundamental form of $ F ^ { m } $ with respect to the $ i $- th normal of an orthonormal set of normals at this point. It follows from (*) that, for a hypersurface $ F ^ { n- 1 } $ in $ E ^ {n} $, all even elementary symmetric functions of the principal curvatures

$$ K _ {2p} = \ \sum _ {i _ {1} <\dots< i _ {2p} } k _ {i _ {1} } \dots k _ {i _ {2p} } , $$

$ 2 \leq 2p \leq n - 1 $, are defined by the first fundamental form of $ F ^ { n- 1 } $. In an even-dimensional space $ E ^ {2m} $, $ m > 1 $, a hypersurface $ F ^ { 2m- 1 } $ is uniquely defined by its first fundamental form and by the Gauss–Kronecker curvature

$$ K = k _ {1} \dots k _ {2m - 1 } , $$

on the condition that the latter is non-zero [5].

For large classes of two-dimensional irregular surfaces in $ E ^ {3} $ it is possible to define an "external curvatureexternal curvature" as a Borel measure connected with the spherical mapping and an "intrinsic curvatureintrinsic curvature" as a measure connected with the difference between the sum of the angles of a triangle and $ \pi $. A generalization of Gauss' theorem is the statement that the external and the internal curvatures coincide. Such a generalization of Gauss' theorem was obtained for general convex surfaces [6] and for $ C ^ {1} $- smooth surfaces of bounded external curvature [7].

References

[1] C.F. Gauss, "Allgemeine Flächentheorie" , W. Engelmann , Leipzig (1900) (Translated from Latin)
[2] W. Blaschke, "Einführung in die Differentialgeometrie" , Springer (1950)
[3] D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)
[4] L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)
[5] S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)
[6] A.D. Aleksandrov, "Die innere Geometrie der konvexen Flächen" , Akademie Verlag (1955) (Translated from Russian)
[7] A.V. Pogorelov, "Extrinsic geometry of convex surfaces" , Amer. Math. Soc. (1972) (Translated from Russian)

Comments

The Peterson–Codazzi equations are better known as the Mainardi–Codazzi equations.

References

[a1] M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)
[a2] P. Dombrowski, "150 years after Gauss" Astérisque , 62 (1979)
[a3] M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) pp. 145
[a4] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969)
[a5] M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5
How to Cite This Entry:
Gauss theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_theorem&oldid=15763
This article was adapted from an original article by Yu.D. Burago (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article