Namespaces
Variants
Actions

Difference between revisions of "Gauss sum"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (eqref)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
<!--
 +
g0435401.png
 +
$#A+1 = 68 n = 0
 +
$#C+1 = 68 : ~/encyclopedia/old_files/data/G043/G.0403540 Gauss sum
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A [[Trigonometric sum|trigonometric sum]] of the form
 
A [[Trigonometric sum|trigonometric sum]] of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435401.png" /></td> </tr></table>
+
$$
 +
\tau _ {a} ( \chi )  = \
 +
\sum _ {m = 0 } ^ { {q }  - 1 }
 +
\chi ( m, q)
 +
e ^ {2 \pi i ( am) / q } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435402.png" /> is a numerical character modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435403.png" />. A Gauss sum is fully defined by specifying the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435404.png" /> and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435405.png" />. Such sums were studied by C.F. Gauss (1811) for an odd prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435406.png" /> and the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435407.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435408.png" /> is the [[Legendre symbol|Legendre symbol]]. In such a case
+
where $  \chi ( m, q) $
 +
is a numerical character modulo $  q $.  
 +
A Gauss sum is fully defined by specifying the character $  \chi ( m, q ) $
 +
and the number $  a $.  
 +
Such sums were studied by [[Gauss, Carl Friedrich|C.F. Gauss]] (1811) for an odd prime number $  q = p $
 +
and the character $  \chi ( m, q ) = ( m/q) $,  
 +
where $  ( m/q) $
 +
is the [[Legendre symbol|Legendre symbol]]. In such a case
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g0435409.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
\begin{equation}\label{eq1} \tag{* }
 +
\tau _ {a} ( \chi )  = \
 +
\sum _ {m = 0 } ^ { {p }  - 1 }
 +
e ^ {2 \pi i ( am  ^ {2} ) / p } ,
 +
\end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354010.png" />. By studying the properties of the sum (*), Gauss found the exact expression for the modulus of this sum:
+
where $  ( a, p) = 1 $.  
 +
By studying the properties of the sum \eqref{eq1}, Gauss found the exact expression for the modulus of this sum:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354011.png" /></td> </tr></table>
+
$$
 +
| \tau _ {a} ( \chi ) |  = \sqrt p .
 +
$$
  
He also solved the more difficult problem of determining the sign of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354012.png" />, and showed that
+
He also solved the more difficult problem of determining the sign of $  \tau _ {a} ( \chi ) $,  
 +
and showed that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354013.png" /></td> </tr></table>
+
$$
 +
\tau _ {a} ( \chi )  = \sqrt p \ \
 +
\textrm{ if }  p \equiv 1  (  \mathop{\rm mod}  4)
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354014.png" /></td> </tr></table>
+
$$
 +
\tau _ {a} ( \chi )  = i \sqrt p \ \
 +
\textrm{ if }  p \equiv 3  (  \mathop{\rm mod}  4).
 +
$$
  
Gauss utilized the properties of the sum (*) to solve certain problems in number theory; a particular case is one of the proofs of the [[Quadratic reciprocity law|quadratic reciprocity law]].
+
Gauss utilized the properties of the sum \eqref{eq1} to solve certain problems in number theory; a particular case is one of the proofs of the [[Quadratic reciprocity law|quadratic reciprocity law]].
  
The significance of Gauss sums in number theory only became evident in the 1920s. At that time H. Weyl used general trigonometric sums (cf. [[Weyl sum|Weyl sum]]) in his study on uniform distribution. These sums were used at the same time by I.M. Vinogradov to obtain an estimate from above of the smallest quadratic non-residue modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354015.png" />.
+
The significance of Gauss sums in number theory only became evident in the 1920s. At that time H. Weyl used general trigonometric sums (cf. [[Weyl sum|Weyl sum]]) in his study on uniform distribution. These sums were used at the same time by I.M. Vinogradov to obtain an estimate from above of the smallest quadratic non-residue modulo $  p $.
  
With the aid of Gauss sums it is possible to establish a relation between two important objects in number theory — viz. between the multiplicative characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354016.png" /> and the additive characters
+
With the aid of Gauss sums it is possible to establish a relation between two important objects in number theory — viz. between the multiplicative characters $  \chi = \chi ( m, p) $
 +
and the additive characters
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354017.png" /></td> </tr></table>
+
$$
 +
f _ {a}  = f _ {a} ( m)  = e ^ {2 \pi i ( am) / p }
 +
$$
  
(only the case of a prime module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354018.png" /> is considered, for the sake of simplicity). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354019.png" /> of all complex-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354020.png" /> with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354021.png" /> forms a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354022.png" />-dimensional vector space over the field of complex numbers. If one defines the scalar product in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354023.png" /> by putting
+
(only the case of a prime module $  p $
 +
is considered, for the sake of simplicity). The set $  F $
 +
of all complex-valued functions $  f( x) $
 +
with period $  p $
 +
forms a $  p $-
 +
dimensional vector space over the field of complex numbers. If one defines the scalar product in $  F $
 +
by putting
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354024.png" /></td> </tr></table>
+
$$
 +
( f, g)  = {
 +
\frac{1}{p}
 +
}
 +
\sum _ {x = 0 } ^ { {p }  - 1 }
 +
f ( x) \overline{g} ( x),\ \
 +
f, g \in F,
 +
$$
  
then the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354026.png" />, form an orthonormal basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354027.png" />; here
+
then the functions $  f _ {a} ( m) $,
 +
$  a = 0, \dots, p - 1 $,  
 +
form an orthonormal basis of $  F $;  
 +
here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354028.png" /></td> </tr></table>
+
$$
 +
\chi  = \sum _ {a = 0 } ^ { {p }  - 1 }
 +
\alpha _ {a} f _ {a} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354029.png" />. Thus, the Gauss sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354030.png" /> (up to the factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354031.png" />) are coordinates in the expansion of the multiplicative character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354032.png" /> by the additive characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354033.png" />. The possibility of a linear representation of any character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354034.png" /> as a linear combination of exponents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354035.png" />, which follows from the properties of Gauss sums of general type, forms the basis of the proof of the functional equation for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354036.png" />-function.
+
where $  \alpha _ {a} = \tau _ {a} ( \chi )/p $.  
 +
Thus, the Gauss sums $  \tau _ {a} ( \chi ) $ (up to the factor $  1/p $)  
 +
are coordinates in the expansion of the multiplicative character $  \chi $
 +
by the additive characters $  f _ {a} $.  
 +
The possibility of a linear representation of any character $  \chi = \chi ( m, q) $
 +
as a linear combination of exponents $  e ^ {2 \pi i ( am ) / q } $,  
 +
which follows from the properties of Gauss sums of general type, forms the basis of the proof of the functional equation for the $  L $-function.
  
These ideas are effectively applied in the method of the [[Large sieve|large sieve]], and in passing from an estimate of sums of additive characters to an estimate of sums of multiplicative characters. Gauss sums are also employed to represent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354037.png" />-functions by finite sums. Such a representation is employed in the problem of the number of divisor classes of a cyclotomic field.
+
These ideas are effectively applied in the method of the [[Large sieve|large sieve]], and in passing from an estimate of sums of additive characters to an estimate of sums of multiplicative characters. Gauss sums are also employed to represent $  L $-functions by finite sums. Such a representation is employed in the problem of the number of divisor classes of a cyclotomic field.
  
The problem of the sign of the Gauss sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354038.png" /> belonging to a quadratic character may be stated in a more general manner for a Gauss sum belonging to a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354039.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354040.png" />. The [[Kummer hypothesis|Kummer hypothesis]] on cubic Gauss sums with a prime module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354041.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354042.png" />), as well as its generalization to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354043.png" />, arises.
+
The problem of the sign of the Gauss sum $  \tau _ {a} ( \chi ) $
 +
belonging to a quadratic character may be stated in a more general manner for a Gauss sum belonging to a character $  \chi $
 +
of order $  k \geq  3 $.  
 +
The [[Kummer hypothesis|Kummer hypothesis]] on cubic Gauss sums with a prime module $  p \equiv 1 $ ($  \mathop{\rm mod}  3 $),  
 +
as well as its generalization to $  k > 3 $,  
 +
arises.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Disquisitiones Arithmeticae" , Yale Univ. Press  (1966)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "The method of trigonometical sums in the theory of numbers" , Interscience  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Davenport,  "Multiplicative number theory" , Springer  (1980)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  H. Hasse,  "Vorlesungen über Zahlentheorie" , Springer  (1950)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Disquisitiones Arithmeticae" , Yale Univ. Press  (1966)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "The method of trigonometical sums in the theory of numbers" , Interscience  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Davenport,  "Multiplicative number theory" , Springer  (1980)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  H. Hasse,  "Vorlesungen über Zahlentheorie" , Springer  (1950)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A numerical character modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354045.png" /> is basically a character of the group of units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354046.png" /> of the residue ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354047.png" />, i.e. a homomorphism of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354048.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354049.png" />. Given such a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354050.png" /> it is extended to a function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354051.png" /> by setting
+
A numerical character modulo $  q $
 +
is basically a character of the group of units $  \mathbf Z ( q)  ^ {*} $
 +
of the residue ring $  \mathbf Z ( q) $,  
 +
i.e. a homomorphism of Abelian groups $  \chi : \mathbf Z ( q)  ^ {*} \rightarrow T $,  
 +
where $  T = \{ {z \in \mathbf C } : {| z | = 1 } \} $.  
 +
Given such a $  \chi $
 +
it is extended to a function on $  \mathbf Z $
 +
by setting
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354052.png" /></td> </tr></table>
+
$$
 +
\chi ( a)  = \chi ( \overline{a} ) \ \
 +
\textrm{ if }  ( a, q) = 1 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354053.png" /></td> </tr></table>
+
$$
 +
\chi ( a)  = 0 \  \textrm{ if }  ( a, q) > 1 .
 +
$$
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354054.png" /> denotes the residue class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354055.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354056.png" />. This function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354057.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354058.png" /> then satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354060.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354062.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354063.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354064.png" />, and, conversely, any such function is a numerical character modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354065.png" />. There are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354066.png" /> of them, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354067.png" /> is the [[Euler function|Euler function]]. Instead of  "numerical character modulo q"  one also sees the phrase residue character modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354069.png" /> or [[Dirichlet character|Dirichlet character]] modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354070.png" />.
+
Here $  \overline{a} $
 +
denotes the residue class of $  a $
 +
modulo $  q $.  
 +
This function $  \chi $
 +
on $  \mathbf Z $
 +
then satisfies $  \chi ( ab) = \chi ( a) \chi ( b) $,  
 +
$  \chi ( a) \neq 0 $
 +
if and only if $  ( a, q) = 1 $,  
 +
$  \chi ( a) = \chi ( b) $
 +
if $  a \equiv b $
 +
$  \mathop{\rm mod}  q $,  
 +
and, conversely, any such function is a numerical character modulo $  q $.  
 +
There are $  \phi ( q) $
 +
of them, where $  \phi $
 +
is the [[Euler function]]. Instead of  "numerical character modulo q"  one also sees the phrase residue character modulo $  q $
 +
or [[Dirichlet character]] modulo $  q $.

Latest revision as of 19:40, 29 March 2024


A trigonometric sum of the form

$$ \tau _ {a} ( \chi ) = \ \sum _ {m = 0 } ^ { {q } - 1 } \chi ( m, q) e ^ {2 \pi i ( am) / q } , $$

where $ \chi ( m, q) $ is a numerical character modulo $ q $. A Gauss sum is fully defined by specifying the character $ \chi ( m, q ) $ and the number $ a $. Such sums were studied by C.F. Gauss (1811) for an odd prime number $ q = p $ and the character $ \chi ( m, q ) = ( m/q) $, where $ ( m/q) $ is the Legendre symbol. In such a case

\begin{equation}\label{eq1} \tag{* } \tau _ {a} ( \chi ) = \ \sum _ {m = 0 } ^ { {p } - 1 } e ^ {2 \pi i ( am ^ {2} ) / p } , \end{equation}

where $ ( a, p) = 1 $. By studying the properties of the sum \eqref{eq1}, Gauss found the exact expression for the modulus of this sum:

$$ | \tau _ {a} ( \chi ) | = \sqrt p . $$

He also solved the more difficult problem of determining the sign of $ \tau _ {a} ( \chi ) $, and showed that

$$ \tau _ {a} ( \chi ) = \sqrt p \ \ \textrm{ if } p \equiv 1 ( \mathop{\rm mod} 4) $$

and

$$ \tau _ {a} ( \chi ) = i \sqrt p \ \ \textrm{ if } p \equiv 3 ( \mathop{\rm mod} 4). $$

Gauss utilized the properties of the sum \eqref{eq1} to solve certain problems in number theory; a particular case is one of the proofs of the quadratic reciprocity law.

The significance of Gauss sums in number theory only became evident in the 1920s. At that time H. Weyl used general trigonometric sums (cf. Weyl sum) in his study on uniform distribution. These sums were used at the same time by I.M. Vinogradov to obtain an estimate from above of the smallest quadratic non-residue modulo $ p $.

With the aid of Gauss sums it is possible to establish a relation between two important objects in number theory — viz. between the multiplicative characters $ \chi = \chi ( m, p) $ and the additive characters

$$ f _ {a} = f _ {a} ( m) = e ^ {2 \pi i ( am) / p } $$

(only the case of a prime module $ p $ is considered, for the sake of simplicity). The set $ F $ of all complex-valued functions $ f( x) $ with period $ p $ forms a $ p $- dimensional vector space over the field of complex numbers. If one defines the scalar product in $ F $ by putting

$$ ( f, g) = { \frac{1}{p} } \sum _ {x = 0 } ^ { {p } - 1 } f ( x) \overline{g} ( x),\ \ f, g \in F, $$

then the functions $ f _ {a} ( m) $, $ a = 0, \dots, p - 1 $, form an orthonormal basis of $ F $; here

$$ \chi = \sum _ {a = 0 } ^ { {p } - 1 } \alpha _ {a} f _ {a} , $$

where $ \alpha _ {a} = \tau _ {a} ( \chi )/p $. Thus, the Gauss sums $ \tau _ {a} ( \chi ) $ (up to the factor $ 1/p $) are coordinates in the expansion of the multiplicative character $ \chi $ by the additive characters $ f _ {a} $. The possibility of a linear representation of any character $ \chi = \chi ( m, q) $ as a linear combination of exponents $ e ^ {2 \pi i ( am ) / q } $, which follows from the properties of Gauss sums of general type, forms the basis of the proof of the functional equation for the $ L $-function.

These ideas are effectively applied in the method of the large sieve, and in passing from an estimate of sums of additive characters to an estimate of sums of multiplicative characters. Gauss sums are also employed to represent $ L $-functions by finite sums. Such a representation is employed in the problem of the number of divisor classes of a cyclotomic field.

The problem of the sign of the Gauss sum $ \tau _ {a} ( \chi ) $ belonging to a quadratic character may be stated in a more general manner for a Gauss sum belonging to a character $ \chi $ of order $ k \geq 3 $. The Kummer hypothesis on cubic Gauss sums with a prime module $ p \equiv 1 $ ($ \mathop{\rm mod} 3 $), as well as its generalization to $ k > 3 $, arises.

References

[1] C.F. Gauss, "Disquisitiones Arithmeticae" , Yale Univ. Press (1966) (Translated from Latin)
[2] I.M. Vinogradov, "The method of trigonometical sums in the theory of numbers" , Interscience (1954) (Translated from Russian)
[3] H. Davenport, "Multiplicative number theory" , Springer (1980)
[4] K. Prachar, "Primzahlverteilung" , Springer (1957)
[5] H. Hasse, "Vorlesungen über Zahlentheorie" , Springer (1950)

Comments

A numerical character modulo $ q $ is basically a character of the group of units $ \mathbf Z ( q) ^ {*} $ of the residue ring $ \mathbf Z ( q) $, i.e. a homomorphism of Abelian groups $ \chi : \mathbf Z ( q) ^ {*} \rightarrow T $, where $ T = \{ {z \in \mathbf C } : {| z | = 1 } \} $. Given such a $ \chi $ it is extended to a function on $ \mathbf Z $ by setting

$$ \chi ( a) = \chi ( \overline{a} ) \ \ \textrm{ if } ( a, q) = 1 , $$

$$ \chi ( a) = 0 \ \textrm{ if } ( a, q) > 1 . $$

Here $ \overline{a} $ denotes the residue class of $ a $ modulo $ q $. This function $ \chi $ on $ \mathbf Z $ then satisfies $ \chi ( ab) = \chi ( a) \chi ( b) $, $ \chi ( a) \neq 0 $ if and only if $ ( a, q) = 1 $, $ \chi ( a) = \chi ( b) $ if $ a \equiv b $ $ \mathop{\rm mod} q $, and, conversely, any such function is a numerical character modulo $ q $. There are $ \phi ( q) $ of them, where $ \phi $ is the Euler function. Instead of "numerical character modulo q" one also sees the phrase residue character modulo $ q $ or Dirichlet character modulo $ q $.

How to Cite This Entry:
Gauss sum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_sum&oldid=18033
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article