Namespaces
Variants
Actions

Difference between revisions of "Fundamental system of solutions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing superscripts)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
f0422601.png
 +
$#A+1 = 62 n = 0
 +
$#C+1 = 62 : ~/encyclopedia/old_files/data/F042/F.0402260 Fundamental system of solutions
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a linear homogeneous system of ordinary differential equations''
 
''of a linear homogeneous system of ordinary differential equations''
  
 
A basis of the vector space of real (complex) solutions of that system. (The system may also consist of a single equation.) In more detail, this definition can be formulated as follows.
 
A basis of the vector space of real (complex) solutions of that system. (The system may also consist of a single equation.) In more detail, this definition can be formulated as follows.
  
A set of real (complex) solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422601.png" /> (given on some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422602.png" />) of a linear homogeneous system of ordinary differential equations is called a fundamental system of solutions of that system of equations (on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422603.png" />) if the following two conditions are both satisfied: 1) if the real (complex) numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422604.png" /> are such that the function
+
A set of real (complex) solutions $  \{ x _ {1} ( t), \dots, x _ {n} ( t) \} $ (given on some set $  E $)  
 +
of a linear homogeneous system of ordinary differential equations is called a fundamental system of solutions of that system of equations (on $  E $)  
 +
if the following two conditions are both satisfied: 1) if the real (complex) numbers $  C _ {1}, \dots, C _ {n} $
 +
are such that the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422605.png" /></td> </tr></table>
+
$$
 +
C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t)
 +
$$
  
is identically zero on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422606.png" />, then all the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422607.png" /> are zero; 2) for every real (complex) solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422608.png" /> of the system in question there are real (complex) numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f0422609.png" /> (not depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226010.png" />) such that
+
is identically zero on $  E $,  
 +
then all the numbers $  C _ {1}, \dots, C _ {n} $
 +
are zero; 2) for every real (complex) solution $  x ( t) $
 +
of the system in question there are real (complex) numbers $  C _ {1}, \dots, C _ {n} $ (not depending on $  t $)  
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226011.png" /></td> </tr></table>
+
$$
 +
x ( t)  = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) \ \
 +
\textrm{ for  all  }  t \in E.
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226012.png" /> is an arbitrary non-singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226013.png" />-dimensional matrix, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226014.png" /> is a fundamental system of solutions, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226015.png" /> is also a fundamental system of solutions; every fundamental system of solutions can be obtained by such a transformation from a given one.
+
If $  ( c _ {ij} ) _ {i, j = 1 }  ^ {n} $
 +
is an arbitrary non-singular $  ( n \times n) $-dimensional matrix, and $  \{ x _ {1} ( t), \dots, x _ {n} ( t) \} $
 +
is a fundamental system of solutions, then $  \{ \sum _ {j = 1 }  ^ {n} c _ {1j} x _ {j} ( t), \dots, \sum _ {j = 1 }  ^ {n} c _ {nj} x _ {j} ( t) \} $
 +
is also a fundamental system of solutions; every fundamental system of solutions can be obtained by such a transformation from a given one.
  
 
If a system of differential equations has the form
 
If a system of differential equations has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\dot{x}  = A ( t) x,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226017.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226018.png" />), if
+
where $  x \in \mathbf R  ^ {n} $ (or $  x \in \mathbf C  ^ {n} $),  
 +
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226019.png" /></td> </tr></table>
+
$$
 +
A ( \cdot ): \
 +
( \alpha , \beta )  \rightarrow \
 +
\mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226020.png" /></td> </tr></table>
+
$$
 +
( \textrm{ respectively }  ( \alpha , \beta )  \rightarrow \
 +
\mathop{\rm Hom} ( \mathbf C  ^ {n} , \mathbf C  ^ {n} ))
 +
$$
  
and if the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226021.png" /> is summable on every segment contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226022.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226023.png" /> is a bounded or unbounded interval in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226024.png" />), then the vector space of solutions of this system is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226025.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226026.png" />). Consequently, the system (1) has an infinite set of fundamental systems of solutions, and each such fundamental system consists of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226027.png" /> solutions. For example, for the system of equations
+
and if the mapping $  A ( \cdot ) $
 +
is summable on every segment contained in $  ( \alpha , \beta ) $ ($  ( \alpha , \beta ) $
 +
is a bounded or unbounded interval in $  \mathbf R $),  
 +
then the vector space of solutions of this system is isomorphic to $  \mathbf R  ^ {n} $ (respectively, $  \mathbf C  ^ {n} $).  
 +
Consequently, the system (1) has an infinite set of fundamental systems of solutions, and each such fundamental system consists of $  n $
 +
solutions. For example, for the system of equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226028.png" /></td> </tr></table>
+
$$
 +
\dot{u}  = u ,\ \
 +
\dot{v}  = - v ,
 +
$$
  
 
an arbitrary fundamental system of solutions has the form
 
an arbitrary fundamental system of solutions has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226029.png" /></td> </tr></table>
+
$$
 +
\left \{ \left (
 +
\begin{array}{c}
 +
e  ^ {t} u _ {1} \\
 +
e  ^ {- t} v _ {1}
 +
\end{array}
 +
 
 +
\right ) ,\
 +
\left (
 +
\begin{array}{c}
 +
e  ^ {t} u _ {2} \\
 +
e  ^ {- t} v _ {2}
 +
\end{array}
 +
 
 +
\right ) \right \} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226030.png" /></td> </tr></table>
+
$$
 +
\left (
 +
\begin{array}{l}
 +
u _ {1} \\
 +
v _ {1}
 +
\end{array}
 +
 
 +
\right ) ,\ \
 +
\left (
 +
\begin{array}{l}
 +
u _ {2} \\
 +
v _ {2}
 +
\end{array}
 +
 
 +
\right )
 +
$$
  
 
are arbitrary linearly independent column vectors.
 
are arbitrary linearly independent column vectors.
Line 39: Line 114:
 
Every fundamental system of solutions of (1) has the form
 
Every fundamental system of solutions of (1) has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226031.png" /></td> </tr></table>
+
$$
 +
\{ X ( t, \tau ) x _ {1}, \dots, X ( t, \tau ) x _ {n} \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226032.png" /> is the [[Cauchy operator|Cauchy operator]] of (1), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226033.png" /> is an arbitrary fixed number in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226034.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226035.png" /> is an arbitrary fixed basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226036.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226037.png" />).
+
where $  X ( t, \tau ) $
 +
is the [[Cauchy operator|Cauchy operator]] of (1), $  \tau $
 +
is an arbitrary fixed number in $  ( \alpha , \beta ) $,
 +
and $  x _ {1}, \dots, x _ {n} $
 +
is an arbitrary fixed basis of $  \mathbf R  ^ {n} $ (respectively, $  \mathbf C  ^ {n} $).
  
 
If the system of differential equations consists of the single equation
 
If the system of differential equations consists of the single equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226038.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
x  ^ {( k)} + a _ {1} ( t) x ^ {( k - 1) } + \dots +
 +
a _ {k} ( t) x  = 0,
 +
$$
  
 
where the functions
 
where the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226039.png" /></td> </tr></table>
+
$$
 +
a _ {1} ( t) \dots a _ {k} ( t): \
 +
( \alpha , \beta )  \rightarrow \
 +
\mathbf R \  ( \textrm{ or } \
 +
( \alpha , \beta )  \rightarrow  \mathbf C )
 +
$$
  
are summable on every segment contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226040.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226041.png" /> is a bounded or unbounded interval in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226042.png" />), then the vector space of solutions of this equation is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226043.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226044.png" />). Consequently, the equation (2) has infinitely many fundamental sets of solutions, and each of them consists of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226045.png" /> solutions. For example, the equation
+
are summable on every segment contained in $  ( \alpha , \beta ) $ ($  ( \alpha , \beta ) $
 +
is a bounded or unbounded interval in $  \mathbf R $),  
 +
then the vector space of solutions of this equation is isomorphic to $  \mathbf R  ^ {k} $ (respectively, $  \mathbf C  ^ {k} $).  
 +
Consequently, the equation (2) has infinitely many fundamental sets of solutions, and each of them consists of $  k $
 +
solutions. For example, the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226046.png" /></td> </tr></table>
+
$$
 +
\ddot{x} + \omega  ^ {2} x  = 0,\ \
 +
\omega  \neq  0,
 +
$$
  
has fundamental system of solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226047.png" />; the general real solution of this equation is given by the formula
+
has fundamental system of solutions $  \{ \cos  \omega t, \sin  \omega t \} $;  
 +
the general real solution of this equation is given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226048.png" /></td> </tr></table>
+
$$
 +
= C _ {1}  \cos  \omega t + C _ {2}  \sin  \omega t,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226050.png" /> are arbitrary real constants.
+
where $  C _ {1} $
 +
and $  C _ {2} $
 +
are arbitrary real constants.
  
 
If a system of differential equations has the form
 
If a system of differential equations has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226051.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
x  ^ {( k)}  = \
 +
A _ {1} ( t) x ^ {( k - 1) } + \dots + A _ {k} ( t) x,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226052.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226053.png" />) and if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226054.png" /> the mappings
+
where $  x \in \mathbf R  ^ {n} $ (or $  x \in \mathbf C  ^ {n} $)  
 +
and if for all $  i = 1, \dots, k - 1 $
 +
the mappings
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226055.png" /></td> </tr></table>
+
$$
 +
A _ {i} ( \cdot ): \
 +
( \alpha , \beta )  \rightarrow \
 +
\mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226056.png" /></td> </tr></table>
+
$$
 +
( \textrm{ or }  ( \alpha , \beta )  \rightarrow  \mathop{\rm Hom} ( \mathbf C  ^ {n} , \mathbf C  ^ {n} ))
 +
$$
  
are summable on every segment contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226057.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226058.png" /> is a bounded or unbounded interval in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226059.png" />), then the space of solutions of this system is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226060.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226061.png" />); there are fundamental systems of solutions of (3), and each of them consists of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042260/f04226062.png" /> solutions.
+
are summable on every segment contained in $  ( \alpha , \beta ) $ (where $  ( \alpha , \beta ) $
 +
is a bounded or unbounded interval in $  \mathbf R  ^ {n} $),  
 +
then the space of solutions of this system is isomorphic to $  \mathbf R  ^ {kn} $ (respectively, $  \mathbf C  ^ {kn} $);  
 +
there are fundamental systems of solutions of (3), and each of them consists of $  kn $
 +
solutions.
  
 
For linear homogeneous systems of differential equations that are not solved with respect to their leading derivatives, even if the coefficients of the system are constant, the number of solutions that appear in a fundamental system of solutions (that is, the dimension of the vector space of solutions) cannot always be calculated as easily as in the cases above. (In [[#References|[1]]], Sect. 11 there is an examination of such a calculation for linear systems of differential equations with constant coefficients that are not solved with respect to their leading derivatives.)
 
For linear homogeneous systems of differential equations that are not solved with respect to their leading derivatives, even if the coefficients of the system are constant, the number of solutions that appear in a fundamental system of solutions (that is, the dimension of the vector space of solutions) cannot always be calculated as easily as in the cases above. (In [[#References|[1]]], Sect. 11 there is an examination of such a calculation for linear systems of differential equations with constant coefficients that are not solved with respect to their leading derivatives.)
Line 77: Line 193:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:34, 13 June 2022


of a linear homogeneous system of ordinary differential equations

A basis of the vector space of real (complex) solutions of that system. (The system may also consist of a single equation.) In more detail, this definition can be formulated as follows.

A set of real (complex) solutions $ \{ x _ {1} ( t), \dots, x _ {n} ( t) \} $ (given on some set $ E $) of a linear homogeneous system of ordinary differential equations is called a fundamental system of solutions of that system of equations (on $ E $) if the following two conditions are both satisfied: 1) if the real (complex) numbers $ C _ {1}, \dots, C _ {n} $ are such that the function

$$ C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) $$

is identically zero on $ E $, then all the numbers $ C _ {1}, \dots, C _ {n} $ are zero; 2) for every real (complex) solution $ x ( t) $ of the system in question there are real (complex) numbers $ C _ {1}, \dots, C _ {n} $ (not depending on $ t $) such that

$$ x ( t) = C _ {1} x _ {1} ( t) + \dots + C _ {n} x _ {n} ( t) \ \ \textrm{ for all } t \in E. $$

If $ ( c _ {ij} ) _ {i, j = 1 } ^ {n} $ is an arbitrary non-singular $ ( n \times n) $-dimensional matrix, and $ \{ x _ {1} ( t), \dots, x _ {n} ( t) \} $ is a fundamental system of solutions, then $ \{ \sum _ {j = 1 } ^ {n} c _ {1j} x _ {j} ( t), \dots, \sum _ {j = 1 } ^ {n} c _ {nj} x _ {j} ( t) \} $ is also a fundamental system of solutions; every fundamental system of solutions can be obtained by such a transformation from a given one.

If a system of differential equations has the form

$$ \tag{1 } \dot{x} = A ( t) x, $$

where $ x \in \mathbf R ^ {n} $ (or $ x \in \mathbf C ^ {n} $), if

$$ A ( \cdot ): \ ( \alpha , \beta ) \rightarrow \ \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $$

$$ ( \textrm{ respectively } ( \alpha , \beta ) \rightarrow \ \mathop{\rm Hom} ( \mathbf C ^ {n} , \mathbf C ^ {n} )) $$

and if the mapping $ A ( \cdot ) $ is summable on every segment contained in $ ( \alpha , \beta ) $ ($ ( \alpha , \beta ) $ is a bounded or unbounded interval in $ \mathbf R $), then the vector space of solutions of this system is isomorphic to $ \mathbf R ^ {n} $ (respectively, $ \mathbf C ^ {n} $). Consequently, the system (1) has an infinite set of fundamental systems of solutions, and each such fundamental system consists of $ n $ solutions. For example, for the system of equations

$$ \dot{u} = u ,\ \ \dot{v} = - v , $$

an arbitrary fundamental system of solutions has the form

$$ \left \{ \left ( \begin{array}{c} e ^ {t} u _ {1} \\ e ^ {- t} v _ {1} \end{array} \right ) ,\ \left ( \begin{array}{c} e ^ {t} u _ {2} \\ e ^ {- t} v _ {2} \end{array} \right ) \right \} , $$

where

$$ \left ( \begin{array}{l} u _ {1} \\ v _ {1} \end{array} \right ) ,\ \ \left ( \begin{array}{l} u _ {2} \\ v _ {2} \end{array} \right ) $$

are arbitrary linearly independent column vectors.

Every fundamental system of solutions of (1) has the form

$$ \{ X ( t, \tau ) x _ {1}, \dots, X ( t, \tau ) x _ {n} \} , $$

where $ X ( t, \tau ) $ is the Cauchy operator of (1), $ \tau $ is an arbitrary fixed number in $ ( \alpha , \beta ) $, and $ x _ {1}, \dots, x _ {n} $ is an arbitrary fixed basis of $ \mathbf R ^ {n} $ (respectively, $ \mathbf C ^ {n} $).

If the system of differential equations consists of the single equation

$$ \tag{2 } x ^ {( k)} + a _ {1} ( t) x ^ {( k - 1) } + \dots + a _ {k} ( t) x = 0, $$

where the functions

$$ a _ {1} ( t) \dots a _ {k} ( t): \ ( \alpha , \beta ) \rightarrow \ \mathbf R \ ( \textrm{ or } \ ( \alpha , \beta ) \rightarrow \mathbf C ) $$

are summable on every segment contained in $ ( \alpha , \beta ) $ ($ ( \alpha , \beta ) $ is a bounded or unbounded interval in $ \mathbf R $), then the vector space of solutions of this equation is isomorphic to $ \mathbf R ^ {k} $ (respectively, $ \mathbf C ^ {k} $). Consequently, the equation (2) has infinitely many fundamental sets of solutions, and each of them consists of $ k $ solutions. For example, the equation

$$ \ddot{x} + \omega ^ {2} x = 0,\ \ \omega \neq 0, $$

has fundamental system of solutions $ \{ \cos \omega t, \sin \omega t \} $; the general real solution of this equation is given by the formula

$$ x = C _ {1} \cos \omega t + C _ {2} \sin \omega t, $$

where $ C _ {1} $ and $ C _ {2} $ are arbitrary real constants.

If a system of differential equations has the form

$$ \tag{3 } x ^ {( k)} = \ A _ {1} ( t) x ^ {( k - 1) } + \dots + A _ {k} ( t) x, $$

where $ x \in \mathbf R ^ {n} $ (or $ x \in \mathbf C ^ {n} $) and if for all $ i = 1, \dots, k - 1 $ the mappings

$$ A _ {i} ( \cdot ): \ ( \alpha , \beta ) \rightarrow \ \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $$

$$ ( \textrm{ or } ( \alpha , \beta ) \rightarrow \mathop{\rm Hom} ( \mathbf C ^ {n} , \mathbf C ^ {n} )) $$

are summable on every segment contained in $ ( \alpha , \beta ) $ (where $ ( \alpha , \beta ) $ is a bounded or unbounded interval in $ \mathbf R ^ {n} $), then the space of solutions of this system is isomorphic to $ \mathbf R ^ {kn} $ (respectively, $ \mathbf C ^ {kn} $); there are fundamental systems of solutions of (3), and each of them consists of $ kn $ solutions.

For linear homogeneous systems of differential equations that are not solved with respect to their leading derivatives, even if the coefficients of the system are constant, the number of solutions that appear in a fundamental system of solutions (that is, the dimension of the vector space of solutions) cannot always be calculated as easily as in the cases above. (In [1], Sect. 11 there is an examination of such a calculation for linear systems of differential equations with constant coefficients that are not solved with respect to their leading derivatives.)

References

[1] L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)

Comments

The Cauchy operator is also called the transition matrix in the case considered above. See also Fundamental matrix.

References

[a1] E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956)
How to Cite This Entry:
Fundamental system of solutions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fundamental_system_of_solutions&oldid=14876
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article