Namespaces
Variants
Actions

Fundamental group

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Poincaré group

The first absolute homotopy group $ \pi _ {1} ( X, x _ {0} ) $. Let $ I $ be the interval $ [ 0, 1] $, and let $ \partial I = \{ 0, 1 \} $ be its boundary. The elements of the fundamental group of the pointed topological space $ ( X, x _ {0} ) $ are the homotopy classes of closed paths in $ X $, that is, homotopy classes $ \mathop{\rm rel} \{ 0, 1 \} $ of continuous mappings of the pair $ ( I, \partial I) $ into $ ( X, x _ {0} ) $. The path $ s _ {1} s _ {2} $:

$$ s _ {1} s _ {2} ( t) = \ \left \{ \begin{array}{ll} s _ {1} ( 2t), & t \leq 1/2, \\ s _ {2} ( 2t - 1), & t \geq 1/2, \\ \end{array} \right .$$

is called the product of $ s _ {1} $ and $ s _ {2} $. The homotopy class of the product depends only on the classes of the factors, and the resulting operation is, generally speaking, non-commutative. The identity is the class of the constant mapping into $ x _ {0} $, and the inverse of the class $ \overline \phi \; $ containing the path $ \phi ( t) $ is the class of the path $ \psi ( t) = \phi ( 1 - t) $. To a continuous mapping $ f: ( X, x _ {0} ) \rightarrow ( Y, y _ {0} ) $ corresponds the homomorphism

$$ f _ {\#} ( \overline \phi \; ) = \ \overline{ {f \circ \phi }}\; : \ \pi _ {1} ( X, x _ {0} ) \rightarrow \ \pi _ {1} ( Y, y _ {0} ), $$

that is, $ \pi _ {1} $ is a functor from the category of pointed topological spaces into the category of (non-Abelian) groups. For any path $ \phi $ joining the points $ x _ {1} $ and $ x _ {2} $, one can define an isomorphism

$$ \widehat \phi : \ \pi _ {1} ( X, x _ {2} ) \rightarrow \ \pi _ {1} ( X, x _ {1} ), $$

$$ \widehat \phi ( u) t = \left \{ \begin{array}{ll} \phi ( 3t), & t \leq 1/3, \\ \phi ( 3t - 1), & 1/3 \leq t \leq 2/3, \\ \phi ( 3 - 3t), & 2/3 \leq t \leq 1, \\ \end{array} \right .$$

that depends only on the homotopy class of $ \phi $. The group $ \pi _ {1} ( X, x _ {0} ) $ acts as a group of automorphisms on $ \pi _ {n} ( X, x _ {0} ) $, and in the case $ n = 1 $, $ \overline \phi \; $ acts as an inner automorphism $ \overline{u}\; \rightarrow \overline{ {\phi u \phi }}\; {} ^ {-} 1 = \widehat \phi ( \overline{u}\; ) $. The Hurewicz homomorphism $ h: \pi _ {1} ( X, x _ {0} ) \rightarrow H _ {1} ( X) $ is an epimorphism with kernel $ [ \pi _ {1} , \pi _ {1} ] $( Poincaré's theorem).

A path-connected topological space with a trivial fundamental group is called simply connected. The fundamental group of a product of spaces $ \prod _ \alpha X _ \alpha $ is isomorphic to the direct product of the fundamental groups of the factors: $ \pi _ {1} ( \prod _ \alpha X _ \alpha ) = \prod _ \alpha \pi _ {1} ( X _ \alpha ) $. Let $ ( X, x _ {0} ) $ be a path-connected topological space, and let $ \{ {U _ \lambda } : {\lambda \in \Lambda } \} $ be a covering of $ X $ by a system of open sets $ U _ \lambda $, closed under intersection, such that $ x _ {0} \in \cap _ \lambda U _ \lambda $; then $ \pi _ {1} ( X, x _ {0} ) $ is the direct limit of the diagram $ \{ G _ \lambda , \phi _ {\lambda \mu \# } \} $, where $ G _ \lambda = \pi _ {1} ( U _ \lambda , x _ {0} ) $, and $ \phi _ {\lambda \mu \# } $ is induced by the inclusion $ \phi _ {\lambda \mu } : U _ \lambda \rightarrow U _ \mu $( the Seifert–van Kampen theorem). For example, if one is given a covering consisting of $ U _ {0} $, $ U _ {1} $ and $ U _ {2} $, and if $ U _ {0} = U _ {1} \cap U _ {2} $ is simply connected, then $ \pi _ {1} ( X, x _ {0} ) $ is the free product of $ \pi _ {1} ( U _ {1} , x _ {0} ) $ and $ \pi _ {1} ( U _ {2} , x _ {0} ) $. In the case of a CW-complex, the assertion of the theorem is also true for closed CW-subspaces of $ X $.

For a CW-complex $ X $ whose zero-dimensional skeleton consists of a single point $ x _ {0} $, each one-dimensional cell $ e _ \lambda ^ {1} \in X $ gives a generator of $ \pi _ {1} ( X, x _ {0} ) $, and each two-dimensional cell $ e _ \lambda ^ {2} \in X $ gives a relation corresponding to the attaching mapping of $ e _ \lambda ^ {2} $.

Suppose that $ X $ has a covering $ \{ {U _ \lambda } : {\lambda \in \Lambda } \} $ such that the inclusion homomorphism $ \pi _ {1} ( U _ \lambda , z) \rightarrow \pi _ {1} ( X, z) $ is zero for every point $ z $. Then there is a covering $ p: \widetilde{X} \rightarrow X $ with $ \pi _ {1} ( \widetilde{X} , x) = 0 $. In this case the group of homeomorphisms of $ \widetilde{X} $ onto itself that commute with $ p $( covering transformations) is isomorphic to $ \pi _ {1} ( X, x _ {0} ) $, and the order of $ \pi _ {1} ( X, x _ {0} ) $ is equal to the cardinality of the fibre $ p ^ {-} 1 x _ {0} $. For a mapping $ f: ( Y, y _ {0} ) \rightarrow ( X, x _ {0} ) $ of path-connected spaces such that $ f _ {\#} ( \pi _ {1} ( Y, y _ {0} )) = 0 $ there is a lifting $ \widetilde{f} : Y \rightarrow \widetilde{X} $, $ p \circ \widetilde{f} = f $. The covering $ p: \widetilde{X} \rightarrow X $ is called universal.

References

[1] W.S. Massey, "Algebraic topology: an introduction" , Springer (1977)
[2] V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian)
[3] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
[4] J.R. Stallings, "Group theory and three-dimensional manifolds" , Yale Univ. Press (1972)
[a1] B. Gran, "Homology theory" , Acad. Press (1975)
How to Cite This Entry:
Fundamental group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fundamental_group&oldid=53781
This article was adapted from an original article by A.V. Khokhlov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article