Namespaces
Variants
Actions

Functional separability

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 54D15 [MSN][ZBL]

complete separability

The property of two sets $A$ and $B$ in a topological space $X$ requiring the existence of a continuous real-valued function $f$ on $X$ such that the closures of the sets $f(A)$ and $f(B)$ (relative to the usual topology on the real line $\mathbf R$) do not intersect. For example, a space is completely regular if every closed set is separable from each one-point set that does not intersect it. A space is normal if every two closed non-intersecting subsets of it are functionally separable. If every two (distinct) one-point sets in a space are functionally separable, then the space is called functionally Hausdorff. The content of these definitions is unchanged if, instead of continuous real-valued functions, one takes continuous mappings into the plane, into an interval or into the Hilbert cube.

References

[1] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) Zbl 0568.54001
[2] J.L. Kelley, "General topology" (2nd ed), Springer (1975) Zbl 0306.54002
How to Cite This Entry:
Functional separability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Functional_separability&oldid=42530
This article was adapted from an original article by A.V. Arkhangel'skii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article