Namespaces
Variants
Actions

Difference between revisions of "Free algebraic system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
f0415101.png
 +
$#A+1 = 105 n = 0
 +
$#C+1 = 105 : ~/encyclopedia/old_files/data/F041/F.0401510 Free algebraic system
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A free object in a certain class of algebraic systems.
 
A free object in a certain class of algebraic systems.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415101.png" /> be a non-empty class of algebraic systems (see [[Algebraic systems, class of|Algebraic systems, class of]]). A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415102.png" /> is called free in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415103.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415105.png" />-free, if it belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415106.png" /> and has a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415107.png" /> of generators such that every mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415108.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f0415109.png" /> into any system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151010.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151011.png" /> can be extended to a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151012.png" />. In this case one also says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151013.png" /> is free over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151014.png" /> in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151015.png" />. A set of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151016.png" /> with this property is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151018.png" />-free base of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151019.png" />, and its cardinality is called the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151020.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151021.png" />-free systems of the same rank are isomorphic. If the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151022.png" /> has a free system of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151023.png" />, then every system from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151024.png" /> that admits a generating set of cardinality at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151025.png" /> is a homomorphic image of it. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151026.png" />-free base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151027.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151028.png" />-free system is also a minimal generating set; therefore, if the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151029.png" /> has isomorphic free systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151031.png" /> of different ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151033.png" />, then both cardinal numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151035.png" /> are finite.
+
Let $  \mathfrak K $
 +
be a non-empty class of algebraic systems (see [[Algebraic systems, class of|Algebraic systems, class of]]). A system $  F $
 +
is called free in the class $  \mathfrak K $,  
 +
or $  \mathfrak K $-
 +
free, if it belongs to $  \mathfrak K $
 +
and has a set $  X $
 +
of generators such that every mapping $  \phi _ {0} : X \rightarrow A $
 +
of $  X $
 +
into any system $  A $
 +
from $  \mathfrak K $
 +
can be extended to a homomorphism $  \phi : F \rightarrow A $.  
 +
In this case one also says that $  F $
 +
is free over $  X $
 +
in the class $  \mathfrak K $.  
 +
A set of generators $  X $
 +
with this property is called a $  \mathfrak K $-
 +
free base of the system $  F $,  
 +
and its cardinality is called the rank of $  F $.  
 +
$  \mathfrak K $-
 +
free systems of the same rank are isomorphic. If the class $  \mathfrak K $
 +
has a free system of rank $  r $,  
 +
then every system from $  \mathfrak K $
 +
that admits a generating set of cardinality at most $  r $
 +
is a homomorphic image of it. A $  \mathfrak K $-
 +
free base $  X $
 +
of a $  \mathfrak K $-
 +
free system is also a minimal generating set; therefore, if the class $  \mathfrak K $
 +
has isomorphic free systems $  F $
 +
and $  F _ {1} $
 +
of different ranks $  r $
 +
and $  r _ {1} $,  
 +
then both cardinal numbers $  r $
 +
and $  r _ {1} $
 +
are finite.
  
A class of algebraic systems is called trivial or degenerate if in each system the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151036.png" /> is true, that is, if all its systems are one-element systems. Otherwise, the class is called non-trivial or non-degenerate. In any non-degenerate quasi-variety (respectively, variety) of algebraic systems (see [[Algebraic systems, quasi-variety of|Algebraic systems, quasi-variety of]]; [[Algebraic systems, variety of|Algebraic systems, variety of]]) there are free algebraic systems of arbitrary rank. A degenerate class of algebraic systems has only free systems of rank 1.
+
A class of algebraic systems is called trivial or degenerate if in each system the identity $  x = y $
 +
is true, that is, if all its systems are one-element systems. Otherwise, the class is called non-trivial or non-degenerate. In any non-degenerate quasi-variety (respectively, variety) of algebraic systems (see [[Algebraic systems, quasi-variety of|Algebraic systems, quasi-variety of]]; [[Algebraic systems, variety of|Algebraic systems, variety of]]) there are free algebraic systems of arbitrary rank. A degenerate class of algebraic systems has only free systems of rank 1.
  
Suppose that a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151037.png" /> has free systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151039.png" /> of finite ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151041.png" />, respectively, and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151042.png" />. The isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151043.png" /> holds if and only if there are terms
+
Suppose that a class $  \mathfrak K $
 +
has free systems $  F _ {l} $
 +
and $  F _ {k} $
 +
of finite ranks $  l $
 +
and $  k $,  
 +
respectively, and suppose that $  k < l $.  
 +
The isomorphism $  F _ {k} \simeq F _ {l} $
 +
holds if and only if there are terms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151044.png" /></td> </tr></table>
+
$$
 +
s _ {i} ( x _ {1} \dots x _ {k} ),\ \
 +
i = 1 \dots l,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151045.png" /></td> </tr></table>
+
$$
 +
t _ {j} ( x _ {1} \dots x _ {l} ),\  j = 1 \dots k,
 +
$$
  
in the signature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151046.png" /> such that the following identities are true in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151047.png" />:
+
in the signature of $  \mathfrak K $
 +
such that the following identities are true in $  \mathfrak K $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151048.png" /></td> </tr></table>
+
$$
 +
s _ {i} ( t _ {1} ( x _ {1} \dots x _ {l} ) \dots
 +
t _ {k} ( x _ {1} \dots x _ {l} ))  = x _ {i} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151049.png" /></td> </tr></table>
+
$$
 +
t _ {j} ( s _ {1} ( x _ {1} \dots x _ {k} ) \dots s _ {l} ( x _ {1} \dots x _ {k} ))  = x _ {j} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151050.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151051.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151052.png" /> contains a finite system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151053.png" /> of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151054.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151055.png" />-free systems of different ranks are not isomorphic. In particular, in all varieties of groups, semi-groups, lattices, and associative rings, free systems of different ranks are not isomorphic. On the other hand, in certain varieties of modules (see [[Free module|Free module]]) all free modules of finite rank are isomorphic.
+
where $  i = 1 \dots l $;  
 +
$  j = 1 \dots k $.  
 +
If $  \mathfrak K $
 +
contains a finite system $  A $
 +
of cardinality $  \geq  2 $,  
 +
then $  \mathfrak K $-
 +
free systems of different ranks are not isomorphic. In particular, in all varieties of groups, semi-groups, lattices, and associative rings, free systems of different ranks are not isomorphic. On the other hand, in certain varieties of modules (see [[Free module|Free module]]) all free modules of finite rank are isomorphic.
  
There are finitely-presented varieties of algebraic systems (see [[Algebraic system|Algebraic system]]) in which all free algebraic systems of finite rank are isomorphic. An example is the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151056.png" /> of algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151057.png" />, of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151058.png" />, defined by the identities
+
There are finitely-presented varieties of algebraic systems (see [[Algebraic system|Algebraic system]]) in which all free algebraic systems of finite rank are isomorphic. An example is the variety $  \mathfrak A _ {1,2} $
 +
of algebras $  \langle  A, \phi _ {1} , \phi _ {2} , \omega \rangle $,  
 +
of type $  \langle  1, 1, 2 \rangle $,  
 +
defined by the identities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151059.png" /></td> </tr></table>
+
$$
 +
\phi _ {i} ( \omega ( x _ {1} , x _ {2} ))  = x _ {i} ,\ \
 +
i = 1, 2,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151060.png" /></td> </tr></table>
+
$$
 +
\omega ( \phi _ {1} ( x), \phi _ {2} ( x))  = x.
 +
$$
  
It has been proved (see [[#References|[3]]]) that in the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151061.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151062.png" /> of algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151063.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151064.png" />-ary operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151066.png" />-ary operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151067.png" />, defined by the identities
+
It has been proved (see [[#References|[3]]]) that in the varieties $  \mathfrak A _ {m,n} $
 +
$  ( 1 \leq  m \leq  n) $
 +
of algebras $  \langle  A, \phi _ {1} \dots \phi _ {n} , \omega _ {1} \dots \omega _ {m} \rangle $,  
 +
with $  m $-
 +
ary operations $  \phi _ {1} \dots \phi _ {n} $
 +
and $  n $-
 +
ary operations $  \omega _ {1} \dots \omega _ {m} $,  
 +
defined by the identities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151068.png" /></td> </tr></table>
+
$$
 +
\phi _ {i} ( \omega _ {1} ( x _ {1} \dots x _ {n} ) \dots
 +
\omega _ {m} ( x _ {1} \dots x _ {n} ))  = x _ {i} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151069.png" /></td> </tr></table>
+
$$
 +
\omega _ {j} ( \phi _ {1} ( x _ {1} \dots x _ {m} ) \dots
 +
\phi _ {n} ( x _ {1} \dots x _ {m} ))  = x _ {j} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151070.png" /></td> </tr></table>
+
$$
 +
= 1 \dots n; \  j  = 1 \dots m,
 +
$$
  
for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151072.png" />, two free algebras of finite rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151073.png" /> are isomorphic if and only if
+
for fixed $  m $
 +
and $  n $,  
 +
two free algebras of finite rank $  k \neq l $
 +
are isomorphic if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151074.png" /></td> </tr></table>
+
$$
 +
k  \equiv  l  \mathop{\rm mod}  ( n - m),\ \
 +
k , l  \geq  m.
 +
$$
  
 
There are universal classes that do not have free systems. An example is the class of groups defined by the universal formulas
 
There are universal classes that do not have free systems. An example is the class of groups defined by the universal formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151075.png" /></td> </tr></table>
+
$$
 +
( x  ^ {2} = 1)  \lor \
 +
( x  ^ {3} = 1),\ \
 +
xy  = yx
 +
$$
  
(the quantifiers have been omitted). A universal class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151076.png" /> with free systems of arbitrary finite rank has free systems of arbitrary rank.
+
(the quantifiers have been omitted). A universal class $  \mathfrak U $
 +
with free systems of arbitrary finite rank has free systems of arbitrary rank.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151077.png" /> be a consistent set of universal formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151078.png" /> of the form
+
Let $  \Sigma $
 +
be a consistent set of universal formulas $  G ( x _ {1} \dots x _ {n} ) $
 +
of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151079.png" /></td> </tr></table>
+
$$
 +
\neg G _ {1}  \lor \dots \lor \
 +
\neg G _ {p}  \lor  G _ {p + 1 }  \lor \dots \lor  G _ {q} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151080.png" /> are atomic formulas of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151081.png" />. Let
+
where $  G _ {1} \dots G _ {q} $
 +
are atomic formulas of the signature $  \Lambda $.  
 +
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151082.png" /></td> </tr></table>
+
$$
 +
ngG  = G _ {1}  \& \dots \&  G _ {p} .
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151083.png" /> is said to have the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151085.png" />-substitution property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151086.png" /> if for any formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151087.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151088.png" /> and for any terms
+
$  \Sigma $
 +
is said to have the $  r $-
 +
substitution property $  ( r \geq  1) $
 +
if for any formula $  G ( x _ {1} \dots x _ {n} ) $
 +
from $  \Sigma $
 +
and for any terms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151089.png" /></td> </tr></table>
+
$$
 +
t _ {1} ( x _ {1} \dots x _ {r} ) \dots
 +
t _ {n} ( x _ {1} \dots x _ {r} )
 +
$$
  
in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151090.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151091.png" /> the following assertion is true:
+
in $  r $
 +
variables $  x _ {1} \dots x _ {r} $
 +
the following assertion is true:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151092.png" /></td> </tr></table>
+
$$
 +
\Sigma  \vdash \
 +
( \forall x _ {1} ) \dots ( \forall x _ {r} ) \
 +
ngG ( t _ {1} \dots t _ {n} ) \Rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151093.png" /></td> </tr></table>
+
$$
 +
\Rightarrow \
 +
( \exists i > p) \
 +
\Sigma  \vdash  ( \forall x _ {1} ) \dots ( \forall x _ {r} )  G _ {i} ( t _ {i} \dots t _ {n} ).
 +
$$
  
In a non-degenerate universal class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151094.png" /> defined by a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151095.png" /> of universal formulas there is a free system of finite rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151096.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151097.png" /> has the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151098.png" />-substitution property [[#References|[4]]]. In particular, if all the formulas in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151099.png" /> are irreducible and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510100.png" /> contains a positive formula
+
In a non-degenerate universal class $  [ \Sigma ] $
 +
defined by a set $  \Sigma $
 +
of universal formulas there is a free system of finite rank $  r \geq  1 $
 +
if and only if $  \Sigma $
 +
has the $  r $-
 +
substitution property [[#References|[4]]]. In particular, if all the formulas in $  \Sigma $
 +
are irreducible and $  \Sigma $
 +
contains a positive formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510101.png" /></td> </tr></table>
+
$$
 +
( \forall x _ {1} ) \dots ( \forall x _ {r} ) \
 +
G _ {1}  \lor \dots \lor  G _ {q}  $$
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510102.png" /> disjoint members, then the universal class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510103.png" /> does not have free systems of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510104.png" />. For example, the class of totally ordered groups in the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510105.png" /> does not have free algebraic systems of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510106.png" />.
+
with $  q \geq  2 $
 +
disjoint members, then the universal class $  [ \Sigma ] $
 +
does not have free systems of rank $  n \geq  r $.  
 +
For example, the class of totally ordered groups in the signature $  \langle  \leq  , \cdot , {}  ^ {-} 1 \rangle $
 +
does not have free algebraic systems of rank $  r \geq  2 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B. Jónsson,  A. Tarski,  "On two properties of free algebras"  ''Math. Scand.'' , '''9'''  (1961)  pp. 95–101</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Swierczkowski,  "On isomorphic free algebras"  ''Fund. Math.'' , '''50''' :  1  (1961)  pp. 35–44</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G. Grätzer,  "On the existence of free structures over universal classes"  ''Math. Nachr.'' , '''36''' :  3–4  (1968)  pp. 135–140</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B. Jónsson,  A. Tarski,  "On two properties of free algebras"  ''Math. Scand.'' , '''9'''  (1961)  pp. 95–101</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Swierczkowski,  "On isomorphic free algebras"  ''Fund. Math.'' , '''50''' :  1  (1961)  pp. 35–44</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G. Grätzer,  "On the existence of free structures over universal classes"  ''Math. Nachr.'' , '''36''' :  3–4  (1968)  pp. 135–140</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The term [[Free algebra|free algebra]] is often used in place of  "free algebraic system" , particularly if the signature of the class under consideration involves only operation-symbols. Clearly, every element of a free algebra with base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510107.png" /> can be written as a [[Word|word]] over the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f041510108.png" /> in the signature of the free class under consideration; an important problem (the word problem) for free algebras is to find an [[Algorithm|algorithm]] for determining when two words are equal as elements of the free algebra. In some varieties of algebras (e.g. semi-groups, modules over a fixed ring, associative algebras) this problem has a trivial solution; in others (e.g. Lie algebras, lattices, Boolean algebras) the solution is known but non-trivial, and in yet others (e.g. alternative rings, modular lattices), it is known that no such algorithm exists. For more details of particular cases, see the entries [[Free Abelian group|Free Abelian group]]; [[Free algebra over a ring|Free algebra over a ring]]; [[Free associative algebra|Free associative algebra]]; [[Free Boolean algebra|Free Boolean algebra]]; [[Free group|Free group]]; [[Free groupoid|Free groupoid]]; [[Free lattice|Free lattice]]; [[Free module|Free module]]; [[Free semi-group|Free semi-group]].
+
The term [[Free algebra|free algebra]] is often used in place of  "free algebraic system" , particularly if the signature of the class under consideration involves only operation-symbols. Clearly, every element of a free algebra with base $  X $
 +
can be written as a [[Word|word]] over the alphabet $  X $
 +
in the signature of the free class under consideration; an important problem (the word problem) for free algebras is to find an [[Algorithm|algorithm]] for determining when two words are equal as elements of the free algebra. In some varieties of algebras (e.g. semi-groups, modules over a fixed ring, associative algebras) this problem has a trivial solution; in others (e.g. Lie algebras, lattices, Boolean algebras) the solution is known but non-trivial, and in yet others (e.g. alternative rings, modular lattices), it is known that no such algorithm exists. For more details of particular cases, see the entries [[Free Abelian group|Free Abelian group]]; [[Free algebra over a ring|Free algebra over a ring]]; [[Free associative algebra|Free associative algebra]]; [[Free Boolean algebra|Free Boolean algebra]]; [[Free group|Free group]]; [[Free groupoid|Free groupoid]]; [[Free lattice|Free lattice]]; [[Free module|Free module]]; [[Free semi-group|Free semi-group]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR></table>

Revision as of 19:40, 5 June 2020


A free object in a certain class of algebraic systems.

Let $ \mathfrak K $ be a non-empty class of algebraic systems (see Algebraic systems, class of). A system $ F $ is called free in the class $ \mathfrak K $, or $ \mathfrak K $- free, if it belongs to $ \mathfrak K $ and has a set $ X $ of generators such that every mapping $ \phi _ {0} : X \rightarrow A $ of $ X $ into any system $ A $ from $ \mathfrak K $ can be extended to a homomorphism $ \phi : F \rightarrow A $. In this case one also says that $ F $ is free over $ X $ in the class $ \mathfrak K $. A set of generators $ X $ with this property is called a $ \mathfrak K $- free base of the system $ F $, and its cardinality is called the rank of $ F $. $ \mathfrak K $- free systems of the same rank are isomorphic. If the class $ \mathfrak K $ has a free system of rank $ r $, then every system from $ \mathfrak K $ that admits a generating set of cardinality at most $ r $ is a homomorphic image of it. A $ \mathfrak K $- free base $ X $ of a $ \mathfrak K $- free system is also a minimal generating set; therefore, if the class $ \mathfrak K $ has isomorphic free systems $ F $ and $ F _ {1} $ of different ranks $ r $ and $ r _ {1} $, then both cardinal numbers $ r $ and $ r _ {1} $ are finite.

A class of algebraic systems is called trivial or degenerate if in each system the identity $ x = y $ is true, that is, if all its systems are one-element systems. Otherwise, the class is called non-trivial or non-degenerate. In any non-degenerate quasi-variety (respectively, variety) of algebraic systems (see Algebraic systems, quasi-variety of; Algebraic systems, variety of) there are free algebraic systems of arbitrary rank. A degenerate class of algebraic systems has only free systems of rank 1.

Suppose that a class $ \mathfrak K $ has free systems $ F _ {l} $ and $ F _ {k} $ of finite ranks $ l $ and $ k $, respectively, and suppose that $ k < l $. The isomorphism $ F _ {k} \simeq F _ {l} $ holds if and only if there are terms

$$ s _ {i} ( x _ {1} \dots x _ {k} ),\ \ i = 1 \dots l, $$

$$ t _ {j} ( x _ {1} \dots x _ {l} ),\ j = 1 \dots k, $$

in the signature of $ \mathfrak K $ such that the following identities are true in $ \mathfrak K $:

$$ s _ {i} ( t _ {1} ( x _ {1} \dots x _ {l} ) \dots t _ {k} ( x _ {1} \dots x _ {l} )) = x _ {i} , $$

$$ t _ {j} ( s _ {1} ( x _ {1} \dots x _ {k} ) \dots s _ {l} ( x _ {1} \dots x _ {k} )) = x _ {j} , $$

where $ i = 1 \dots l $; $ j = 1 \dots k $. If $ \mathfrak K $ contains a finite system $ A $ of cardinality $ \geq 2 $, then $ \mathfrak K $- free systems of different ranks are not isomorphic. In particular, in all varieties of groups, semi-groups, lattices, and associative rings, free systems of different ranks are not isomorphic. On the other hand, in certain varieties of modules (see Free module) all free modules of finite rank are isomorphic.

There are finitely-presented varieties of algebraic systems (see Algebraic system) in which all free algebraic systems of finite rank are isomorphic. An example is the variety $ \mathfrak A _ {1,2} $ of algebras $ \langle A, \phi _ {1} , \phi _ {2} , \omega \rangle $, of type $ \langle 1, 1, 2 \rangle $, defined by the identities

$$ \phi _ {i} ( \omega ( x _ {1} , x _ {2} )) = x _ {i} ,\ \ i = 1, 2, $$

$$ \omega ( \phi _ {1} ( x), \phi _ {2} ( x)) = x. $$

It has been proved (see [3]) that in the varieties $ \mathfrak A _ {m,n} $ $ ( 1 \leq m \leq n) $ of algebras $ \langle A, \phi _ {1} \dots \phi _ {n} , \omega _ {1} \dots \omega _ {m} \rangle $, with $ m $- ary operations $ \phi _ {1} \dots \phi _ {n} $ and $ n $- ary operations $ \omega _ {1} \dots \omega _ {m} $, defined by the identities

$$ \phi _ {i} ( \omega _ {1} ( x _ {1} \dots x _ {n} ) \dots \omega _ {m} ( x _ {1} \dots x _ {n} )) = x _ {i} , $$

$$ \omega _ {j} ( \phi _ {1} ( x _ {1} \dots x _ {m} ) \dots \phi _ {n} ( x _ {1} \dots x _ {m} )) = x _ {j} , $$

$$ i = 1 \dots n; \ j = 1 \dots m, $$

for fixed $ m $ and $ n $, two free algebras of finite rank $ k \neq l $ are isomorphic if and only if

$$ k \equiv l \mathop{\rm mod} ( n - m),\ \ k , l \geq m. $$

There are universal classes that do not have free systems. An example is the class of groups defined by the universal formulas

$$ ( x ^ {2} = 1) \lor \ ( x ^ {3} = 1),\ \ xy = yx $$

(the quantifiers have been omitted). A universal class $ \mathfrak U $ with free systems of arbitrary finite rank has free systems of arbitrary rank.

Let $ \Sigma $ be a consistent set of universal formulas $ G ( x _ {1} \dots x _ {n} ) $ of the form

$$ \neg G _ {1} \lor \dots \lor \ \neg G _ {p} \lor G _ {p + 1 } \lor \dots \lor G _ {q} , $$

where $ G _ {1} \dots G _ {q} $ are atomic formulas of the signature $ \Lambda $. Let

$$ ngG = G _ {1} \& \dots \& G _ {p} . $$

$ \Sigma $ is said to have the $ r $- substitution property $ ( r \geq 1) $ if for any formula $ G ( x _ {1} \dots x _ {n} ) $ from $ \Sigma $ and for any terms

$$ t _ {1} ( x _ {1} \dots x _ {r} ) \dots t _ {n} ( x _ {1} \dots x _ {r} ) $$

in $ r $ variables $ x _ {1} \dots x _ {r} $ the following assertion is true:

$$ \Sigma \vdash \ ( \forall x _ {1} ) \dots ( \forall x _ {r} ) \ ngG ( t _ {1} \dots t _ {n} ) \Rightarrow $$

$$ \Rightarrow \ ( \exists i > p) \ \Sigma \vdash ( \forall x _ {1} ) \dots ( \forall x _ {r} ) G _ {i} ( t _ {i} \dots t _ {n} ). $$

In a non-degenerate universal class $ [ \Sigma ] $ defined by a set $ \Sigma $ of universal formulas there is a free system of finite rank $ r \geq 1 $ if and only if $ \Sigma $ has the $ r $- substitution property [4]. In particular, if all the formulas in $ \Sigma $ are irreducible and $ \Sigma $ contains a positive formula

$$ ( \forall x _ {1} ) \dots ( \forall x _ {r} ) \ G _ {1} \lor \dots \lor G _ {q} $$

with $ q \geq 2 $ disjoint members, then the universal class $ [ \Sigma ] $ does not have free systems of rank $ n \geq r $. For example, the class of totally ordered groups in the signature $ \langle \leq , \cdot , {} ^ {-} 1 \rangle $ does not have free algebraic systems of rank $ r \geq 2 $.

References

[1] A.I. Mal'tsev, "Algebraic systems" , Springer (1973) (Translated from Russian)
[2] B. Jónsson, A. Tarski, "On two properties of free algebras" Math. Scand. , 9 (1961) pp. 95–101
[3] S. Swierczkowski, "On isomorphic free algebras" Fund. Math. , 50 : 1 (1961) pp. 35–44
[4] G. Grätzer, "On the existence of free structures over universal classes" Math. Nachr. , 36 : 3–4 (1968) pp. 135–140

Comments

The term free algebra is often used in place of "free algebraic system" , particularly if the signature of the class under consideration involves only operation-symbols. Clearly, every element of a free algebra with base $ X $ can be written as a word over the alphabet $ X $ in the signature of the free class under consideration; an important problem (the word problem) for free algebras is to find an algorithm for determining when two words are equal as elements of the free algebra. In some varieties of algebras (e.g. semi-groups, modules over a fixed ring, associative algebras) this problem has a trivial solution; in others (e.g. Lie algebras, lattices, Boolean algebras) the solution is known but non-trivial, and in yet others (e.g. alternative rings, modular lattices), it is known that no such algorithm exists. For more details of particular cases, see the entries Free Abelian group; Free algebra over a ring; Free associative algebra; Free Boolean algebra; Free group; Free groupoid; Free lattice; Free module; Free semi-group.

References

[a1] P.M. Cohn, "Universal algebra" , Reidel (1981)
How to Cite This Entry:
Free algebraic system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Free_algebraic_system&oldid=12384
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article