Namespaces
Variants
Actions

Difference between revisions of "Fréchet differential"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
''at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413701.png" /> of a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413702.png" /> of a normed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413703.png" /> into a normed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413704.png" />''
+
<!--
 +
f0413701.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/F041/F.0401370 Fr\Aeechet differential
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413705.png" /> which is linear and continuous from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413706.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413707.png" /> and has the property that
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413708.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
''at a point  $  x _ {0} $
 +
of a mapping  $  f: X \rightarrow Y $
 +
of a normed space  $  X $
 +
into a normed space  $  Y $''
 +
 
 +
The mapping  $  h \rightarrow D ( x _ {0} , h) $
 +
which is linear and continuous from  $  X $
 +
into  $  Y $
 +
and has the property that
 +
 
 +
$$ \tag{1 }
 +
f ( x _ {0} + h)  = \
 +
f ( x _ {0} ) +
 +
D ( x _ {0} , h) +
 +
\epsilon ( h),
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f0413709.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {\| h \| \rightarrow 0 } \
 +
 
 +
\frac{\| \epsilon ( h) \| }{\| h \| }
 +
  = 0.
 +
$$
  
If a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137010.png" /> admits an expansion (1) at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137011.png" />, then it is said to be Fréchet differentiable, and the actual operator
+
If a mapping f $
 +
admits an expansion (1) at a point $  x _ {0} $,  
 +
then it is said to be Fréchet differentiable, and the actual operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137012.png" /></td> </tr></table>
+
$$
 +
f ^ { \prime } ( x _ {0} ) h  = \
 +
D ( x _ {0} , h),\ \
 +
f ^ { \prime } ( x _ {0} )  \in \
 +
L ( X, Y),
 +
$$
  
 
is called the [[Fréchet derivative|Fréchet derivative]].
 
is called the [[Fréchet derivative|Fréchet derivative]].
  
For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137013.png" /> in a finite number of variables, the Fréchet differential is the linear function
+
For a function f $
 +
in a finite number of variables, the Fréchet differential is the linear function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137014.png" /></td> </tr></table>
+
$$
 +
h  \rightarrow \
 +
\sum _ {i = 1 } ^ { n }
 +
\alpha _ {i} h _ {i}  = \
 +
l _ {x _ {0}  } h
 +
$$
  
 
that has the property that
 
that has the property that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
f ( x _ {0} + h)  = \
 +
f ( x _ {0} ) +
 +
l _ {x _ {0}  } ( h) +
 +
o ( | h | ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137016.png" /> or any other equivalent norm in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137017.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137018.png" /> are the partial derivatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137019.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041370/f04137020.png" />.
+
where $  | h | = ( \sum _ {i = 1 }  ^ {n} h _ {i}  ^ {2} )  ^ {1/2} $
 +
or any other equivalent norm in $  \mathbf R  ^ {n} $.  
 +
Here $  \alpha _ {i} = \partial  f / \partial  x _ {i} \mid  _ {x _ {0}  } $
 +
are the partial derivatives of f $
 +
at $  x _ {0} $.
  
 
Definition (2), which is now commonplace, apparently first appeared in an explicit form in the lectures of K. Weierstrass (1861, see [[#References|[1]]]). At the end of the 19th century this definition gradually came into the textbooks (see [[#References|[2]]], [[#References|[3]]] and others). But at the time when M. Fréchet began to develop infinite-dimensional analysis, the now classical definition of the differential was so far from commonplace that even Fréchet himself supposed that his definition of the differential in an infinite-dimensional space was a new concept in the finite-dimensional case too. Nowadays the term is only used in relation to infinite-dimensional mappings. See [[Gâteaux differential|Gâteaux differential]]; [[Differential|Differential]].
 
Definition (2), which is now commonplace, apparently first appeared in an explicit form in the lectures of K. Weierstrass (1861, see [[#References|[1]]]). At the end of the 19th century this definition gradually came into the textbooks (see [[#References|[2]]], [[#References|[3]]] and others). But at the time when M. Fréchet began to develop infinite-dimensional analysis, the now classical definition of the differential was so far from commonplace that even Fréchet himself supposed that his definition of the differential in an infinite-dimensional space was a new concept in the finite-dimensional case too. Nowadays the term is only used in relation to infinite-dimensional mappings. See [[Gâteaux differential|Gâteaux differential]]; [[Differential|Differential]].

Latest revision as of 19:40, 5 June 2020


at a point $ x _ {0} $ of a mapping $ f: X \rightarrow Y $ of a normed space $ X $ into a normed space $ Y $

The mapping $ h \rightarrow D ( x _ {0} , h) $ which is linear and continuous from $ X $ into $ Y $ and has the property that

$$ \tag{1 } f ( x _ {0} + h) = \ f ( x _ {0} ) + D ( x _ {0} , h) + \epsilon ( h), $$

where

$$ \lim\limits _ {\| h \| \rightarrow 0 } \ \frac{\| \epsilon ( h) \| }{\| h \| } = 0. $$

If a mapping $ f $ admits an expansion (1) at a point $ x _ {0} $, then it is said to be Fréchet differentiable, and the actual operator

$$ f ^ { \prime } ( x _ {0} ) h = \ D ( x _ {0} , h),\ \ f ^ { \prime } ( x _ {0} ) \in \ L ( X, Y), $$

is called the Fréchet derivative.

For a function $ f $ in a finite number of variables, the Fréchet differential is the linear function

$$ h \rightarrow \ \sum _ {i = 1 } ^ { n } \alpha _ {i} h _ {i} = \ l _ {x _ {0} } h $$

that has the property that

$$ \tag{2 } f ( x _ {0} + h) = \ f ( x _ {0} ) + l _ {x _ {0} } ( h) + o ( | h | ), $$

where $ | h | = ( \sum _ {i = 1 } ^ {n} h _ {i} ^ {2} ) ^ {1/2} $ or any other equivalent norm in $ \mathbf R ^ {n} $. Here $ \alpha _ {i} = \partial f / \partial x _ {i} \mid _ {x _ {0} } $ are the partial derivatives of $ f $ at $ x _ {0} $.

Definition (2), which is now commonplace, apparently first appeared in an explicit form in the lectures of K. Weierstrass (1861, see [1]). At the end of the 19th century this definition gradually came into the textbooks (see [2], [3] and others). But at the time when M. Fréchet began to develop infinite-dimensional analysis, the now classical definition of the differential was so far from commonplace that even Fréchet himself supposed that his definition of the differential in an infinite-dimensional space was a new concept in the finite-dimensional case too. Nowadays the term is only used in relation to infinite-dimensional mappings. See Gâteaux differential; Differential.

References

[1] P. Dugac, "Eléments d'analyse de Karl Weierstrass" , Paris (1972)
[2] O. Stolz, "Grundzüge der Differential- und Integralrechnung" , 1 , Teubner (1893)
[3] W. Young, "The fundamental theorems of the differential calculus" , Cambridge Univ. Press (1910)
[4] M. Fréchet, "Sur la notion de différentielle" C.R. Acad. Sci. Paris , 152 (1911) pp. 845–847; 1050–1051
[5] M. Fréchet, "Sur la notion de différentielle totale" Nouvelles Ann. Math. Sér. 4 , 12 (1912) pp. 385–403; 433–449
[6] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian)
[7] V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, "Optimal control" , Consultants Bureau (1987) (Translated from Russian)
How to Cite This Entry:
Fréchet differential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fr%C3%A9chet_differential&oldid=14772
This article was adapted from an original article by V.M. Tikhomirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article