Namespaces
Variants
Actions

Difference between revisions of "Flat morphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Morphism|morphism]] of schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406001.png" /> such that for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406002.png" /> the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406003.png" /> is flat over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406004.png" /> (see [[Flat module|Flat module]]). In general, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406005.png" /> be a sheaf of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406006.png" />-modules; it is called flat over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406007.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406008.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f0406009.png" /> is a flat module over the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060010.png" />. Subject to certain (fairly weak) finiteness conditions, the set of points at which a coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060011.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060012.png" /> is flat over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060013.png" /> is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060014.png" />. If, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060015.png" /> is an integral scheme, then there exists an open non-empty subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060016.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060017.png" /> is a flat sheaf over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060018.png" /> at all points lying above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060019.png" />.
+
<!--
 +
f0406001.png
 +
$#A+1 = 46 n = 0
 +
$#C+1 = 46 : ~/encyclopedia/old_files/data/F040/F.0400600 Flat morphism
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A flat morphism of finite type corresponds to the intuitive concept of a continuous family of varieties. A flat morphism is open and equi-dimensional (i.e. the dimensions of the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060020.png" /> are locally constant for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060021.png" />). For many geometric properties, the set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060022.png" /> at which the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060023.png" /> of a flat morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060024.png" /> has this property is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060025.png" />. If a flat morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060026.png" /> is proper (cf. [[Proper morphism|Proper morphism]]), then the set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060027.png" /> for which the fibres over them have this property is open .
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Flat morphisms are used also in descent theory. A morphism of schemes is called faithfully flat if it is flat and surjective. Then, as a rule, one may check any property of a certain object over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060028.png" /> simply by checking this property for the object obtained after a faithfully-flat [[Base change|base change]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060029.png" /> . In this connection, interest attaches to flatness criteria for a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060030.png" /> (or for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060031.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060032.png" />); here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060033.png" /> can be regarded as a local scheme. The simplest criterion relates to the case where the base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060034.png" /> is one-dimensional and regular: A coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060035.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060036.png" /> is flat if and only if the uniformizing parameter in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060037.png" /> has a trivial annihilator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060038.png" />. In a certain sense the general case is reducible to the one-dimensional case. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060039.png" /> be a reduced Noetherian scheme and let for any morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060041.png" /> is a one-dimensional regular scheme, the base change <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060042.png" /> be a flat morphism; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060043.png" /> is a flat morphism. Another flatness criterion requires that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060044.png" /> is universally open, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060045.png" /> and the geometric fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040600/f04060046.png" /> are reduced.
+
A [[Morphism|morphism]] of schemes  $  f:  X\rightarrow Y $
 +
such that for any point  $  x \in X $
 +
the local ring  $  {\mathcal O} _ {X,x} $
 +
is flat over  $  {\mathcal O} _ {Y,f( x) }  $(
 +
see [[Flat module|Flat module]]). In general, let  $  {\mathcal F} $
 +
be a sheaf of  $  {\mathcal O} _ {X} $-
 +
modules; it is called flat over  $  Y $
 +
at a point  $  x \in X $
 +
if  $  {\mathcal F} _ {x} $
 +
is a flat module over the ring  $  {\mathcal O} _ {Y,f( x) }  $.
 +
Subject to certain (fairly weak) finiteness conditions, the set of points at which a coherent  $  {\mathcal O} _ {X} $-
 +
module  $  {\mathcal F} $
 +
is flat over  $  Y $
 +
is open in  $  X $.
 +
If, moreover,  $  Y $
 +
is an integral scheme, then there exists an open non-empty subset  $  U \subset  Y $
 +
such that  $  {\mathcal F} $
 +
is a flat sheaf over  $  Y $
 +
at all points lying above  $  U $.
 +
 
 +
A flat morphism of finite type corresponds to the intuitive concept of a continuous family of varieties. A flat morphism is open and equi-dimensional (i.e. the dimensions of the fibres  $  f ^ { - 1 } ( y) $
 +
are locally constant for  $  y \in Y $).
 +
For many geometric properties, the set of points  $  x \in X $
 +
at which the fibre  $  f ^ { - 1 } ( f( x)) $
 +
of a flat morphism  $  f:  X \rightarrow Y $
 +
has this property is open in  $  X $.
 +
If a flat morphism  $  f $
 +
is proper (cf. [[Proper morphism|Proper morphism]]), then the set of points  $  y \in Y $
 +
for which the fibres over them have this property is open .
 +
 
 +
Flat morphisms are used also in descent theory. A morphism of schemes is called faithfully flat if it is flat and surjective. Then, as a rule, one may check any property of a certain object over $  Y $
 +
simply by checking this property for the object obtained after a faithfully-flat [[Base change|base change]] $  f: C\rightarrow Y $.  
 +
In this connection, interest attaches to flatness criteria for a morphism $  f: X\rightarrow Y $(
 +
or for the $  {\mathcal O} _ {X} $-
 +
module $  {\mathcal F} $);  
 +
here $  Y $
 +
can be regarded as a local scheme. The simplest criterion relates to the case where the base $  Y $
 +
is one-dimensional and regular: A coherent $  {\mathcal O} _ {X} $-
 +
module $  {\mathcal F} $
 +
is flat if and only if the uniformizing parameter in $  Y $
 +
has a trivial annihilator in $  {\mathcal F} $.  
 +
In a certain sense the general case is reducible to the one-dimensional case. Let $  Y $
 +
be a reduced Noetherian scheme and let for any morphism $  Z \rightarrow Y $,  
 +
where $  Z $
 +
is a one-dimensional regular scheme, the base change $  f _ {Z} : X _ {Y} \times Z \rightarrow Z $
 +
be a flat morphism; then f $
 +
is a flat morphism. Another flatness criterion requires that $  f: X \rightarrow Y $
 +
is universally open, while $  Y $
 +
and the geometric fibres f ^ { - 1 } ( \overline{y}\; ) $
 +
are reduced.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''24''' (1964) {{MR|0173675}} {{ZBL|0136.15901}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''28''' (1966) {{MR|0217086}} {{ZBL|0144.19904}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Raynaud, L. Gruson, "Critères de platitude et de projectivité. Techniques de "platification" d'un module" ''Invent. Math.'' , '''13''' (1971) pp. 1–89 {{MR|0308104}} {{ZBL|0227.14010}} </TD></TR></table>
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''24''' (1964) {{MR|0173675}} {{ZBL|0136.15901}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''28''' (1966) {{MR|0217086}} {{ZBL|0144.19904}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Raynaud, L. Gruson, "Critères de platitude et de projectivité. Techniques de "platification" d'un module" ''Invent. Math.'' , '''13''' (1971) pp. 1–89 {{MR|0308104}} {{ZBL|0227.14010}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>

Latest revision as of 19:39, 5 June 2020


A morphism of schemes $ f: X\rightarrow Y $ such that for any point $ x \in X $ the local ring $ {\mathcal O} _ {X,x} $ is flat over $ {\mathcal O} _ {Y,f( x) } $( see Flat module). In general, let $ {\mathcal F} $ be a sheaf of $ {\mathcal O} _ {X} $- modules; it is called flat over $ Y $ at a point $ x \in X $ if $ {\mathcal F} _ {x} $ is a flat module over the ring $ {\mathcal O} _ {Y,f( x) } $. Subject to certain (fairly weak) finiteness conditions, the set of points at which a coherent $ {\mathcal O} _ {X} $- module $ {\mathcal F} $ is flat over $ Y $ is open in $ X $. If, moreover, $ Y $ is an integral scheme, then there exists an open non-empty subset $ U \subset Y $ such that $ {\mathcal F} $ is a flat sheaf over $ Y $ at all points lying above $ U $.

A flat morphism of finite type corresponds to the intuitive concept of a continuous family of varieties. A flat morphism is open and equi-dimensional (i.e. the dimensions of the fibres $ f ^ { - 1 } ( y) $ are locally constant for $ y \in Y $). For many geometric properties, the set of points $ x \in X $ at which the fibre $ f ^ { - 1 } ( f( x)) $ of a flat morphism $ f: X \rightarrow Y $ has this property is open in $ X $. If a flat morphism $ f $ is proper (cf. Proper morphism), then the set of points $ y \in Y $ for which the fibres over them have this property is open .

Flat morphisms are used also in descent theory. A morphism of schemes is called faithfully flat if it is flat and surjective. Then, as a rule, one may check any property of a certain object over $ Y $ simply by checking this property for the object obtained after a faithfully-flat base change $ f: C\rightarrow Y $. In this connection, interest attaches to flatness criteria for a morphism $ f: X\rightarrow Y $( or for the $ {\mathcal O} _ {X} $- module $ {\mathcal F} $); here $ Y $ can be regarded as a local scheme. The simplest criterion relates to the case where the base $ Y $ is one-dimensional and regular: A coherent $ {\mathcal O} _ {X} $- module $ {\mathcal F} $ is flat if and only if the uniformizing parameter in $ Y $ has a trivial annihilator in $ {\mathcal F} $. In a certain sense the general case is reducible to the one-dimensional case. Let $ Y $ be a reduced Noetherian scheme and let for any morphism $ Z \rightarrow Y $, where $ Z $ is a one-dimensional regular scheme, the base change $ f _ {Z} : X _ {Y} \times Z \rightarrow Z $ be a flat morphism; then $ f $ is a flat morphism. Another flatness criterion requires that $ f: X \rightarrow Y $ is universally open, while $ Y $ and the geometric fibres $ f ^ { - 1 } ( \overline{y}\; ) $ are reduced.

References

[1a] A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" Publ. Math. IHES , 24 (1964) MR0173675 Zbl 0136.15901
[1b] A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" Publ. Math. IHES , 28 (1966) MR0217086 Zbl 0144.19904
[2] D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) MR0209285 Zbl 0187.42701
[3] M. Raynaud, L. Gruson, "Critères de platitude et de projectivité. Techniques de "platification" d'un module" Invent. Math. , 13 (1971) pp. 1–89 MR0308104 Zbl 0227.14010

Comments

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001
How to Cite This Entry:
Flat morphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Flat_morphism&oldid=46942
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article